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Research Overview

Datasets & Metrics Evaluations & Future Work

Methods & Model Architecture Results
● Wildfire smoke contributes to 40% of PM2.5 

pollution. Exposure to extreme smoke PM2.5 has 
increased 27-fold over the last decade.

● Accurate measurement of smoke-induced PM2.5 is 
key for understanding the societal impacts of 
wildfire risk. 

● Original research uses XGBoost on a location’s 42
features to predict smoke PM2.5. 

● Instead of only using the location of interest, we 
look at its surrounding areas. Attempt to use CNN 
to incorporate spatial information.

● Based on Tobler’s First Law of Geography:

● Uses location-time embedding to provide 
geographical priors for the model.

● Problem Statement: Given a location and its 
surrounding’s features, can we use deep learning to 
predict its smoke PM2.5 level?

● Main Contributions:
-- Confirms that CNNs can incorporate useful       

spatial information for atmospheric predictions.
-- Confirms that location-time embedding     

provides a powerful spatial-temporal prior.
-- Achieves better results (increase of 0.04 in R 

squared metric) with less features. 

● Datasets from Marshall Burke’s group.

● 400,000 wildfire instances with the target smoke 
PM2.5 value. 5 spatial folds. Folds 1-4 for training. 
Random half of fold 0 for validation / testing.

● 10 features with too many missing values are 
discarded.

● Each instance processed into 11x11x32 “images” 
to include spatial information.

● Smoke PM2.5 defined as PM2.5 pollution above 
the monthly median on a smoke day.

● Overall objective is to minimize the Huber Loss, 
which is more robust to outliers.

RMSE Loss R Squared

Partial XGBoost (32 features) 8.697 0.602

Full XGBoost (42 features) 8.185 0.629

Original ResNet18 8.921 0.581

Modified ResNet18 8.554 0.615

+ Loc-Time Embedding 8.534 0.617

+ Data Augmentation 8.147 0.641

Change RMSE to Huber Loss 7.880 0.664

● Increase from adding Loc-Time Embedding may seem
minimal here but it performs much better on val set.

● Data Augmentation includes horizontal and vertical
flips since they preserve spatial information.

● Best architecture uses Modified ResNet18 + Variable
Location-Time Embedding + Data Augmentation +
Huber Loss.

Failure Case

● Target is 312, but prediction is 5.18.
● September, near Yellowstone.
● Medium-size fire.
● Probably due to Low AOT anomalies on

the day and on previous days.
● A spike in PM2.5 pollution that day.

Saliency Map

“Everything is related to everything else, but near 
things are more related than distant things.”

● Coordinate wrap makes 
Dec. 31st close to Jan. 1st.

● Target variable split into 
33 bins for classification.

● Embedding network pre-
trained for 100 epochs.

● Optimize for presence-
only cross entropy loss.

● It is allowed to update 
during actual training.

10 km x 10 km grids, 
each with 32 features:
● Geographical Info
● AOT Anomalies
● Fire Variables
● Meteorology

The modified ResNet18 reduces the width and height by -1 instead of /2 each time. 

Feature Importance

Feature Type Mean Attribution

“Image” Features 0.243

Loc-Time Embedding 0.142

Confirms Tobler’s First Law of Geography!!

● Integrated gradients method in Captum.
● Location-time embedding is quite useful!

Some of the most important features include:
● AOT anomalies
● Dewpoint temperature
● Month, Lat, Lon
● Distance to closest fire

Imbalance in Target

● The target is highly skewed. 95% 
in [0, 20] and 5% in [20, 800].

● R squared for y < 200 is 0.630 
compared to -2.56 for y > 200.

Future Work

● Results can be variable due to imbalance.
Average over random splits to confirm
effectiveness of each modification.

● Address imbalance by finding new
features that can distinguish edge cases.


