Using CNN and Spatial-Temporal Embedding for Predicting Smoke PM2.5
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Research Overview

e Wildfire smoke contributes to 40% of PM2.5 10 km x 10 km grids, - . . . . S e R
pollution. Exposure to extreme smoke PM2.5 has each with 32 features: The modified ResNet18 reduces the width and height by -1 instead of /2 each time. o
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e Problem Statement: Given a location and its e Coordinate wrap makes prTToTororosrossossosssssosssesoee 5 = E’ + Data Augmentation 8.147 0.641
surrqun.ding’s features, can we use deep learning to Dec. 315t close to Jan. 1st. i i} > T 2 Change RMSE to Huber Loss 7880 0.664
predict its smoke PM2.5 level? e Target variable split into 5 X 5 S S £ N
¢ Main Contributions: 33 bins for classification. < 3| |2 = e 2 e Increase from adding Loc-Time Embedding may seem
-- Confirms that CNNs can incorporate useful e Embedding network pre- ; BENE 53 BN & )% )%’ )% N o )%’ )% >é g uEJ minimal here but it performs much better on val set.
spatial information for atmospheric predictions. trained for 100 epochs. = 5 \E/ - i © |T = o |T L e Data Augmentation includes horizontal and vertical
-- Confirms that location-time embedding e Optimize for presence- "g § "~ N % & = flips since they preserve spatial information.
provides a powerful spatial-temporal prior. only cross entropy loss. a ¥ o I 0 8 e Best architecture uses Modified ResNet18 + Variable
-- Achieves better results (increase of 0.04 in R e |[tisallowed toupdate - Location-Time Embedding + Data Augmentation +
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Datasets & Metrics Evaluations & Future Work

e Datasets from Marshall Burke’s group. Saliency Map Feature Importance Imbalance in Target Failure Case
e 400,000 wildfire instances with the target smoke

] o Average Saliency Map Over 1000 Images . « e
PM2.5 value. 5 spatial folds. Folds 1-4 for training. ~ Feature Type Mean Attribution 1504 o Targetis 312, but predictionis 5.18.
Random half of fold O for validation / testing. 020 - - 300 o September, near Yellowstone.
: .. Image” Features 0.243 | J— e Medium-size fire.
e 10 features with too many missing values are - 0.18 20 :
discarded Loc-Time Embedding 0142 © 200- e Probably due to Low AOT anomalies on
o ' dinto 11x11x32 i ) - 0.16 > 1501 the day and on previous days.
e Eachinstance processed into 11x11x Images 100 ] A spike in PM2.5 pollution that day.

0.14 e [ntegrated gradients method in Captum.

to include spatial information. , , = ,
e |ocation-time embedding is quite useful!

e Smoke PM2.5 defined as PM2.5 pollution above
the monthly median on a smoke day.
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0.12 Future Work

0.10 Some of the most important features include: e Results can be variable due to imbalance.

e Overall objective is to minimize the Huber Loss, e AOT anomalies e The target is highly skewed. 95% Average over random splits to confirm
which is more robust to outliers. B 0.08 e Dewpoint temperature in [0, 20] and 5% in [20, 800]. effectiveness of each modification.
] 0.5(mn — yn)?, if |z, — yn| < delta e Month, Lat, Lon e Rsquaredfory<200is0.630 e Address imbalance by finding new
" {delta * (|zn — yn| — 0.5 * delta), otherwise Confirms Tobler’s First Law of Geography!! e Distance to closest fire compared to -2.56 fory > 200. features that can distinguish edge cases.



