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Main Pipeline Technical Details
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e Problem Setting: w/ segmented instances + Auxiliary losses . Augmentation:

-- Input: a single image (segmented) of multiple objects Pose prediction + Random color background + Noise.
fom thesame category . Resuts ;
e Auxiliary Losses:

-- Goal: learn the objects’ 3D layout distribution
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interpolation and extrapolation results.

Datasets & Metrics
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e Novel views + Interpolation + Extrapolation abilities.

e Disentanglement between geometry and layout.
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PR, Y N e Difficult to quantitatively evaluate the results.
% 53 D D § e Single-view supervision = other views can have slight
irregularities.
e Extrapolation to different number of instances seems to

e Dataset contains single-view Internet images.
e Segment the foreground objects (e.g. with SAM).
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e Relyon qualitative judgements since we have no . - ., " =R > - RS ::‘. be interpolating among object instances.
ground-truth 3D poses of objects. At ‘ a:’ > R - =~ e Trainingis unstable & fails for more complex scenes.
e Implement camera walks, latent walks, and g e ot " N LT e Extend the pipeline to real images of multiple different

extrapolation to different number of instances. objects (e.g. indoor scenes).



