
Learning Generative 3D Scene Layouts from a Single Image

Linan Zhao*

Stanford University
Zeqing Yuan* †

Zhejiang University
Yunzhi Zhang

Stanford University
Shangzhe Wu

Stanford University

Jiajun Wu
Stanford University

Abstract

What is a scene, conceptually? It can be decomposed
into multiple objects, their spatial arrangement, and the
background. While recent works have pushed the boundary
on modeling 3D objects, the scene layout indicating how
objects are arranged in 3D space remains under-explored.
In this work, we build a generative model that learns the
3D scene layout distribution from a single 2D image, such
as a photo of a parking lot containing several cars. We
first retrieve the object geometry from segmented instances.
Next, we build a permutation-equivariant model to gen-
erate layout parameters, which, combined with geometry,
render scene images. We then leverage a patch-based dis-
criminator on 2D images along with auxiliary losses to
guide layout learning. Experiments demonstrate that our
model successfully learns a wide range of layout distri-
butions, each from a single Internet image. Our method
achieves superior results on multiple downstream tasks, in-
cluding extrapolating on number of instances and trans-
ferring learned layout to other objects. Project page at
https://sinlayout.github.io/.

1. Introduction
A scene can be conceptually disentangled into objects,

their spatial layout and the background. Recent advance-
ments in generative models have significantly improved ob-
ject modeling [11,13,17,27]. However, composing multiple
objects into a coherent layout remains an unresolved chal-
lenge. There are certain layout distributions of how objects
could be oriented and located in our 3D space, originating
from either nature or human fabrications.

[1, 23] have made strides in implicitly modeling object
layouts in 3D-aware feature space but still rely on 2D image

*Equal contribution; each reserves the right to be listed first.
†Work done during UGVRI program at Stanford University.

generator. [2] employ a large language model for planning
scene layouts, but language falls short in describing scene
layout compared to visual inputs.

Given a single image containing multiple instances of the
same category, human can capture the layout distribution by
inferring steady poses and layout patterns. This ability is vi-
tal for generating diverse and plausible 3D scenes and com-
prehending human visual cognition in scene understanding.
Nevertheless, this ability is non-trivial in computer vision.
Considering 6D object pose estimation [29] being a long
sought-after task, learning from a single image the distribu-
tion of spatial layout is particularly hard.

In this work, our goal is to build a pipeline that captures
such 3D scene layout distribution from a single image, and
to use this model to generate faithful and diverse 3D scenes,
which supports not only rendering under novel view points
and illumination conditions, but also extrapolation to vary-
ing number of instances.

This task is challenging for the following four reasons.
First, this is a zero-shot setting with only one single image
as input, which marks the difference from typical generative
tasks relying on a large dataset to fit the distribution. Sec-
ond, we does not assume knowing the ground-truth pose
parameters of the input image, which is necessary for typi-
cal diffusion pipeline to learn layout distribution in our set-
ting. Third, the input image may include occlusion, making
it hard for pose perception. Finally, the layout information
we aim to learn is probabilistic, requiring the generator to
understand reasonable interpolation and extrapolation. This
poses great difficulties compared to deterministic task such
as 6D object pose estimation.

To address these challenges, we propose an permutation-
equivariant layout generator and an adversarial pipeline
with an inductive bias that all instances within the image
shares the same category in order to avoid the interference
of inter-class semantic relation. Our pipeline obtains the in-
stance geometry and use patch-based discriminators along

1

https://sinlayout.github.io/

with auxiliary losses to guide the training process. The gen-
erator can synthesize diverse layout with varying number of
instances. Along with obtained geometry, scene images can
be rendered under any view point and illumination condi-
tion.

To demonstrate the effectiveness of our method, we con-
duct experiments on synthetic and real images, including in-
terpolation on input noise and extrapolation to varying num-
ber of instances. The result show that our model is capable
of generating faithful and diverse layouts.

The contributions of this paper are as follows:

1. We propose the problem of learning 3D scene layout
distribution from a single image, and thus decompose
zero-shot 3D scene generation into object modeling,
layout learning and background inpainting.

2. We build a generative pipeline fulfilling this task.

3. We demonstrate the effectiveness of our method
through experiments on both synthetic and real im-
ages, as well as extrapolation study on varying number
of instances.

2. Related Work
2.1. Scene Layout Modeling

Works on scene image generation like BlobGAN and
BlobGAN-3D [1,23] disentangle individual objects and im-
plicitly model object layouts in feature space by using ap-
proximate blobs as representations. The representations are
projected into a feature map, serving as inputs to image
synthesis networks to generating 2D scene images based
on image priors. The generative process remains inher-
ently 2D, though adopting 3D-aware feature representation.
Our method explicitly represents object layouts in 3D space,
thereby naturally managing problems such as occlusion and
shading. It also enables rendering from any viewpoint and
under various lighting conditions.

On the other hand, LayoutGPT [2] leverages a large lan-
guage model as scene layout planner. The language model
outputs layout in the form of bounding box parameters. In
comparison to image input, this approach is hampered by
the limited ability of language to describe visual layouts
and the comprehension of large language model on 3D vi-
sual information, leading to issues with controllability and
diversity.

3inGAN [7] focuses on a similar task of generating 3D
scenes from image input by a multi-level pipeline using 3D
feature grids. However, it relies on multiple images with
pose information as input, whereas we use a single image
without pose information. Besides, it assumes the input
scene image to be stochastic and self-similar, which we do
not.

SinGRAV [25] also adopts an adversarial pipeline for
scene generation, but learns to generate neural radience vol-
umes from multi-view observations of a single scene. It
leverages a multi-scale framework with convolutional net-
works that emphasize spatial locality bias.

To the best of our knowledge, this work is the first to
learn generative 3D scene-level layouts from a single image
without ground-truth layout annotations or geometry.

2.2. Generative Modeling on a Single Image

Generative models traditionally require extensive
datasets to accurately fit specific distributions. How-
ever, recent works such as SinGAN and SinDiffu-
sion [4, 15, 19, 20, 24] utilize patch-based approaches to
leverage diversity within regional crops, facilitating the
training of GANs and diffusion models with just a single
image. These methods have demonstrated the potential
of single-image generative modeling. However, they
predominantly focus on 2D aspects and do not explicitly
address the complexities of 3D space. Further, [27] have
made strides in this area by developing an adversarial
pipeline that recovers object intrinsics, including 3D shape
and albedo, from singular images featuring multiple similar
instances. Our work extends the focus towards the intrinsics
of 3D scenes, particularly spatial layouts. Additionally,
the significance of heavy augmentation in single-image
training has been highlighted by [22] in image shape
manipulation tasks. In line with this, ADA [8] introduces
differentiable data augmentation techniques effective in
limited-data settings.

3. Method

Given a single RGB image I containing n instances of
the same object arranged in a patterned way, our goal is to
learn its associated underlying layout pattern. Examples of
such patterns include parallel lines, circular patterns, and
objects being up-right, as shown in Figure 3. For all ob-
ject instances in the scene, there exists a ground truth loca-
tion and rotation of the object relative to the camera. We
coin an object instance’s location and rotation as its lay-
out parameter, denoted by pi ∈ SE(3) for i = 1, 2, · · · , n.
Thus, the layout of the input image I can be expressed as
the set {pi}ni=1 since the order of constituting objects do
not matter in a scene. Further, we view the input image’s
layout as one sample from a larger ground truth layout dis-
tribution P . This distribution P captures all layout pat-
terns that are structurally and semantically similar to the in-
put image’s {pi}ni=1. Specifically, P should be a subset of
∪m∈N{SE(3)}mi=1 and any sample from P should contain
a set of m layout parameters which form a scene similar to
that of I . Our goal is to learn this underlying distribution
from a single sample through adversarial training.

2

Figure 1. Model overview. We propose a generative model that recovers the layout of multiple objects within a scene from a single
input image. We disentangle the geometry of objects from the layout parameters, which include location and rotation parameterized
by quaternions. We first segment out individual instances in the input image and use score distillation sampling (SDS) loss with pre-
trained diffusion models like Zero-1-to-3 [11] to recover the object’s 3D geometry. Then, we model the layout generator as a two stage
permutation-equivariant set transformer. The first set transformer generates locations from sampled Gaussian noises and the second set
transformer generates rotation quaternions conditional on locations. Combined with the reconstructed 3D geometry, we can render a patch
of the generated scene. The whole pipeline is trained with patch-based discriminators and auxiliary losses.

Here, note that we do not restrict m to be the same as the
number of instances n of the input scene. This is because,
for example, we regard a tray of 12 cupcakes arranged in 3
rows and 4 columns and a tray of 8 cupcakes arranged in
2 rows and 4 columns to share the same overall layout dis-
tribution P . The two arrangements are two separate draws
from the same layout distribution. Further, we define P as a
distribution over sets as we assume order invariance of ob-
ject instances. The set of objects form a coherent scene but
the relative order bears no significance in our setting.

Figure 1 illustrates an overview of our training pipeline,
which involves recovering object geometry, modeling lay-
out, and learning from patch-based adversarial loss. Sec-
tion 3.1 details how we recover the 3D geometry and tex-
ture of an average object from segmented instances Ii in the
input image I . With the recovered object geometry, Sec-
tion 3.2 explains the permutation-equivariant design of our
layout generator. Together, the model can generate scenes
of the objects, which is trained with a patch-based adversar-
ial scheme. The training objective and details are presented
in Section 3.3 and Section 3.4. Through our pipeline, the
layout generator learns to match the distribution of gener-
ated layout parameters to P .

3.1. Geometry Modeling

In this section, we illustrate how we infer an average ob-
ject geometry from the input instance observations. Given
the input image I , we first use Grounded SAM [12] to seg-
ment out the individual instances I1, I2, · · · , In as well as
the background, assuming there are n instances in the in-
put image scene. Going forward, we can assume that I has
no background. Since we do not assume the scene has no
occlusion, some object instances in {Ii}ni=1 may be incom-
plete. As such, we cannot easily run textual-inversion-based
methods like [17] and resort to single-image-based methods
like [11, 13].

One approach we use to recover the 3D geometry and
texture of the object is through score distillation sam-
pling (SDS) guidance from Zero-1-to-3 [11]. Essentially,
Zero123 is a fine-tuned diffusion model that aims to gen-
erate novel views of an object given any relative cam-
era viewpoint conditional on one input image of the ob-
ject. Given a single RGB image L1 and camera extrinsics
R ∈ R3×3, T ∈ R3, Zero123 synthesizes novel views under
the camera transformation x̂R,T = f(x,R, T). In particu-
lar, let its denoiser be ϵ̂ϕ(zt; t, c(x,R, T)), where zt is the
diffused image of x(R,T) and c() is the embedding of input
view and camera extrinsics being conditioned on.

To recover the 3D model of the object, we first initialize a

3

NeRF fξ(R, T) parameterized by ξ, which renders images
of the object from camera pose (R, T). Given a sampled
(R, T), we can render the generated view x̂ from our NeRF
fξ(R, T). We can then diffuse x̂ and use SDS guidance to
update the parameters ξ. The SDS loss is defined as in [16]:

∇ξLSDS(ϕ, x̂ = fξ(R, T)) =

Et,ϵ[w(t)(ϵ̂ϕ(zt; t, c(x,R, T))− ϵ)
∂x̂

∂θ
].

(1)

Intuitively, this loss provides an update direction that moves
the generated image to higher-density regions following the
score function of the diffusion model. Once the NeRF is
trained, we export it to a textured mesh for faster differen-
tiable rendering [18].

Now, to render a scene of n objects with layout parame-
ters pn in SE(3)n, we first use the recovered mesh to render
individual objects. Then, given the objects’ z coordinate or-
dering, we alpha-compose all the individual objects into the
same scene. This approach has the advantage of faster ren-
dering, especially when we only need to render a patch of
the scene. For simplicity, the rendering process is modeled
as f(pn, c), where pn ∈ SE(3)n is the location and rotation
of all n instances, and c = (w0, w1, h0, h1) defines the crop
of the whole scene we want to render.

3.2. Layout Modeling

Now that we can render a scene of objects given any
combination of layout parameters, we wish to generate lay-
out that are similar to the input image’s. Specifically, we
wish to train a generator gθ(z) : N (0, I)n → SE(3)n to
generate a distribution P̂ that is similar to P . Note that
we can further decompose SE(3)n in terms of translation
vectors and rotation matrices. We can also parameterize ro-
tation matrices in R3×3 as quaternions a+ b i+ c j+ d k ∈
H. This allows for a more compact representation and a
potentially more continuous parameter space. Thus, any
p ∈ SE(3) can be interpreted as (R, T) with R ∈ H and
T ∈ [0, 1]

3, where we assume location in a finite-size scene
is normalized to [0, 1]

3.
In addition, instead of generating all the location and ro-

tation parameters all at once, i.e. learning the joint distri-
bution of P (R, T), we find that modelling P (R|T)P (T) is
easier. Thus, we use two generators, the first one gθ1(z) :

N (0, I)n → ([0, 1]
3
)n maps Gaussian noises to location

parameters, and the second one gθ2(T) : ([0, 1]
3
)n → Hn

maps generated location to rotation quaternions. Thus,
gθ(z) is equivalent to (gθ1(z), gθ2(gθ1(z))).

As shown in Figure 1, we use two permutation-
equivariant set transformers to model gθ1 and gθ2 . The
set transformer design is drawn from [10], with the inten-
tion of generating a set instead of generating an ordered
list. Specifically, we sample n independent d-dimensional
Gaussian noise vectors, and pass them through the same

fully-connected in-layer to be projected into n higher di-
mensional vectors. These vectors are then passed into a
transformer architecture without positional embeddings, be-
fore being projected down to n [0, 1]

3 location vectors by
another fully-connected layer and sigmoid layer. Similarly,
the second set transformer gθ2 generates the rotation quater-
nions conditional on the location vectors generated by gθ1 .
The transformer backbone follows the common structure
in [21] as indicated in Figure 1.

The advantage of the set transformer is that the atten-
tion mechanism can readily grasp the complex interactions
between set elements. It is expressive enough to capture
the relationship among objects’ layout parameters, which is
exactly the layout distribution we want to learn. The permu-
tation equivalence property ensures that as long as the input
noises are the same as a set, the final scene would look the
same. This makes sure that the ith generated layout param-
eter does not correspond to a fixed object in the scene and
over-fits to that object’s location and pose. Moreover, this
design allows for the generation of an arbitrary number of
layout parameters - n can be any positive integer and does
not have to be the exact number of instances in the input
scene. This feature grants the ability to extrapolate on the
number of instances to create more diverse scenes.

3.3. Adversarial Training

Since we do not know object instance locations and
poses, we cannot directly train the generator in layout pa-
rameter space. Instead, we leverage a generative adver-
sarial (GAN) framework [3] to update the layout genera-
tor in pixel space. That is, we train an image discriminator
Dη that discriminates on image crops from real and fake
scenes. This patch-based design is inspired by recent works
in single-image generative models like [4, 15, 19, 20, 24].

Image Crops. Specifically, in each iteration, we sam-
ple n Gaussian noises and generate the corresponding gθ(z)
layout parameters pn. Given these layout parameters, we
can render an image crop Ifake of the fake scene using
f(pn, c), where c = (w0, w1, h0, h1) is the coordinates of a
randomly sampled crop. The size of the crop is a fixed pro-
portion s of the input image’s dimensions. We further de-
note c ∼ C, where C is the uniform distribution of all pos-
sible such crops. Similarly, we randomly sample a crop out
of C for the real image I and denote it as Ireal. The discrim-
inator’s goal is to distinguish Ifake from Ireal. In our experi-
ments, we found that a relatively large crop, i.e. s = 95%,
works best. Also, we fix n to be the number of instances in
the input scene during training.

Discriminator Design. The discriminator uses a con-
volutional neural network architecture followed by a linear
projection layer. To stabilize training and avoid early over-
fitting of the discriminator Dη , we add an auxiliary pose
prediction task as regularization. This auxiliary loss is de-

4

Figure 2. Learning from both synthetic (left) and real-world (right) images. Given a single 2D image containing similar objects arranged in
a coherent layout, our proposed method can learn the underlying layout distribution in 3D space. The top row represents the input images
whereas the bottom row are generated images using reconstructed geometry and learned layout parameters. At test time, our model can
generate diverse layout parameters consistent with the input scene.

fined as

Lpose(η) = Lcham(gGS(R̂), gGS(R)), (2)

where Lcham(A,B) is the Chamfer loss between two sets of
vectors defined as

Lcham(A,B) =
∑
a∈A

min
b∈B

||a−b||22+
∑
b∈B

min
a∈A

||a−b||22, (3)

R, R̂ are the rotation matrices used to generate the fake
scene and the predicted pose by the discriminator respec-
tively, and gGS maps SO(3) rotations to 6D embeddings fol-
lowing [28].

In addition to the image discriminator Dη , we use a sec-
ond discriminator Dηmask for masks. This discriminator re-
ceives the masks of the cropped fake image and the cropped
real image for discrimination. We found that the separate
mask discriminator helps to stabilize location generation
and improves overall result.

Augmentations. In single-image GANs, it is very easy
for the discriminator to over-fit the input image. As such,
[22] points out that heavy augmentation is needed. Since
the generated fake scene and the input image have no back-
ground, we use random color backgrounds to stabilize train-
ing, similar to [27]. Further, we use Adaptive discriminator
augmentation (ADA) [8] to augment Ireal and Ifake. In par-
ticular, we found that adding random noise with a somewhat
large probability (e.g. 0.5) works well.

Training Objective. Similar to [14,27], we use a binary
cross entropy loss as the GAN training objective, with a
regularization term on the gradient of the discriminator:

Ladv(θ,η, I) = Ez,c∼C [h(Dη(f(gθ(z), c)))]

+ EC [h(−Dη(Ireal))− λreg||∇Dη(Ireal)||2],
(4)

where h(t) = − log(1 + e−t).

In addition, since we have masks for the segmented indi-
vidual objects, we can use the average of the masks’ x and
y coordinates as a proxy for the object’s location projected
onto the image plane. Denote these locations as {xi, yi}ni=1.
Similarly, we can project the generated location vectors
gθ1(z) onto the image plane to obtain {x̂i, ŷi}ni=1. We can
then use Chamfer loss to directly supervise location gener-
ation:

Lloc(θ1) = Lcham({xi, yi}ni=1, {x̂i, ŷi}ni=1). (5)

Lastly, since the space visible to the camera is a frustum
and not a cube, we add a simple off-scene loss Loff-scene(θ1)
that penalizes generated locations outside the viewing frus-
tum. This loss encourages all generated objects to be within
view, as objects not rendered in the fake scene will receive
no gradient updates.

Combining all the losses above, the final training objec-
tive comprises of five terms:

L(θ, η, I) = Ladv(θ, η, I) + λmaskLadv(θ, ηmask, I)+

λposeLpose(η) + λlocLloc(θ1) + λoff-sceneLoff-scene(θ1).
(6)

3.4. Training Details

For different images, we use different scene resolutions
for training, the scene resolution is roughly proportional
to ⌈

√
n⌉, where n is the number of instances in the input

scene. Weights of the loss terms in Equation (6) are spec-
ified as λreg = 10, λmask = 0.1, λpose = 1, λloc = 10,
and λoff-scene = 10. The input noise has dimension 3, as
it matches with the 3-dimensional x, y, z coordinates. The
transformer architecture is adopted from [26] with 256 di-
mension and 4 attention heads. The backbone for both dis-
criminators is adapted from GIRAFFE [14]. To provide
a better initialization, we pretrain the first set transformer
gθ1(z) using Chamfer loss similar to Equation (5). This
avoids heavy occlusion at the start of training. We use an

5

Figure 3. Examples of in-the-wild images from the Internet with
diverse layouts and objects.

Adam [9] optimizer for the generator and RMSprop [5] op-
timizers for the two discriminators, with learning rates 3e−5

and 1e−4 respectively. Since 3D rendering takes signifi-
cant VRAM space, we found that using gradient accumula-
tion [6] to mimic a small batch of 16 is quite effective.

4. Experiment
We test our method on both synthetic data and real-

world images and evaluate the generation quality exten-
sively. Synthetic data allows us to test performance under
specified common layouts while real-world images allow
us to test the robustness of our methods. Experiments show
that our proposed method can recover a diverse range of
layouts from both synthetic and real data. We also demon-
strate several downstream tasks that showcase the versatility
of our learned generator.

Dataset. For the synthetic data set, we download the
mesh of a car from the Internet. We then build custom
scenes with well-defined layouts as shown in the left half
of Figure 2. In particular, we focus on four cases – lay-
out with or without uniform rotation and from top-down or
slanted camera views. For instance, the left most image is a
case of uniform rotation with top-down camera view.

For the real-life images, we curate a diverse set of images
from the Internet shown in Figure 3. These images capture
many different types of objects as well as many different
forms of layout distributions. Note that we try to sample a
wide variety of images – those with or without occlusion,
those with or without slight instance variations, and those
with or without uniform texture.

Results. We are able to demonstrate promising results
on synthetic images. In particular, we can solve any of the
four cases mentioned above. Even when there are occlu-
sions among objects and nonuniform poses, our layout gen-
erator can still capture the underlying layout distribution.
In Figure 2, we see that our method can faithfully recover a
diverse range of layout distributions.

Similar successes are evident on real images as well.
We can recover uniform layout from top-down views and

Figure 4. Layout Interpolation. Interpolation in the latent space
allows us to generate diverse samples from the learned layout dis-
tribution. The leftmost column shows the input images and the
right three columns show generated layout from different noises.

slanted views where there are significant amounts of occlu-
sion. We can also learn non-uniform layout and capture the
spatial pattern in more stochastic scenes. Notice that the
reconstructed meshes in the real images are not exactly the
same as the real objects and the lighting in the real-world
images can also be quite complex. Thus, our method is rea-
sonably robust to these variations and can learn layout in
realistic situations.

Diversity. To demonstrate diversity, we can interpolate
z in the latent space and sample multiple layout parame-
ters and scenes. This allows us to see how the generated
layout morphs from one to the other. Figure 4 illustrates
three examples from both synthetic and real data. Layout
parameters generated from different input noises are similar
and largely adhere to the input image’s layout distribution.
However, some instabilities do exist due to stochastic GAN
training and we are actively working on improving the re-
sults.

Extrapolation. To demonstrate generalizability, we can
extrapolate on the number of instances within the scene.
This ability comes from the permutation-equivariant design
of our generator. Although the model is only trained on an
image with a fixed number of instances, it can still produce
faithful layout for different number of instances.

During inference, we can simply expand or reduce the
number of Gaussian noises being sampled to generate
scenes with more or less number of instances. Figure 5
demonstrates four examples from different input scenes.
Most notably, when we generate 6 instances or 20 instances
in the synthetic circular layout case, the generated image
still looks like a circle. And when we generate 8 or 12
instances of croissants, the generator synthesizes a two-
by-four and a three-by-four layout respectively. Given the
training image only contains the four-by-four uniform lay-

6

Figure 5. Layout Extrapolation. Extrapolating on the number
of instances. Although the generator only learns from a single
image, and hence a fixed layout, it is able to extrapolate to different
numbers of instances while maintaining the layout patterns. Here,
all images are marked with its number of instances in the scene,
with input images marked with asterisk.

Figure 6. Layout Transfer. Transferring learned layout to other
geometries. In this case, we can transfer a circle of cars to a flower
wreath.

out, this generalizing ability is quite impressive.
Other Applications. Further, our method can have

many downstream applications. Since layout parameters
and the geometry are disentangled, we can transfer learned
layout to other geometries, shown in Figure 6. This allows
us to creatively generate many more different scenes with
other assets. We can also directly edit the layout parame-
ters. For instance, we can scale the location parameters by
2 to get a more dispersed scene. Further, since the rendering
process is fully explicit and involves cameras and lights, we
can render the same scene from any camera viewpoint and
using any lighting. This demonstrates the importance and
potential of our setting as we can lift a single 2D image to a
coherent 3D scene.

5. Conclusion

In this work, we introduce a novel task of learning 3D
scene layout distribution from a single image, focusing on
the rotation and location of objects from the same cat-
egory. To tackle this problem, we propose a two-stage
permutation-equivariant layout generator and an adversar-
ial training pipeline. Through experiments, our method has
demonstrated its effectiveness in capturing various layout
distributions from a single Internet image, successfully gen-
erating diverse yet authentic layouts consistent with the in-
put image.

References
[1] Dave Epstein, Taesung Park, Richard Zhang, Eli Shechtman,

and Alexei A. Efros. Blobgan: Spatially disentangled scene
representations. European Conference on Computer Vision,
2022. 1, 2

[2] Weixi Feng, Wanrong Zhu, Tsu jui Fu, Varun Jampani, Ar-
jun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and
William Yang Wang. Layoutgpt: Compositional visual plan-
ning and generation with large language models. arXiv
preprint arXiv: 2305.15393, 2023. 1, 2

[3] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks, 2014. 4

[4] Niv Granot, Assaf Shocher, Ben Feinstein, Shai Bagon, and
M. Irani. Drop the gan: In defense of patches nearest neigh-
bors as single image generative models. Computer Vision
and Pattern Recognition, 2021. 2, 4

[5] Alex Graves. Generating sequences with recurrent neural
networks, 2014. 6

[6] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Fi-
rat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe:
Efficient training of giant neural networks using pipeline par-
allelism, 2019. 6

[7] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy
Mitra. 3inGAN: Learning a 3D generative model from im-
ages of a self-similar scene. In Proc. 3D Vision (3DV), 2022.
2

[8] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages
12104–12114. Curran Associates, Inc., 2020. 2, 5

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 6

[10] Adam R. Kosiorek, Hyunjik Kim, and Danilo J. Rezende.
Conditional set generation with transformers. CoRR,
abs/2006.16841, 2020. 4

[11] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. ICCV, 2023. 1, 3

7

[12] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, and Lei Zhang. Grounding dino: Marrying dino with
grounded pre-training for open-set object detection, 2023. 3

[13] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu,
Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai Zhang,
Marc Habermann, Christian Theobalt, and Wenping Wang.
Wonder3d: Single image to 3d using cross-domain diffusion.
arXiv preprint arXiv: 2310.15008, 2023. 1, 3

[14] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields,
2021. 5

[15] Yaniv Nikankin, Niv Haim, and Michal Irani. Sinfusion:
Training diffusion models on a single image or video. arXiv
preprint arXiv: 2211.11743, 2022. 2, 4

[16] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion, 2022. 4

[17] Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer,
Nataniel Ruiz, Ben Mildenhall, Shiran Zada, Kfir Aber-
man, Michael Rubinstein, Jonathan Barron, Yuanzhen Li,
and Varun Jampani. Dreambooth3d: Subject-driven text-to-
3d generation. arXiv preprint arXiv: 2303.13508, 2023. 1,
3

[18] Nikhila Ravi, Jeremy Reizenstein, David Novotný, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3d deep learning with pytorch3d. CoRR,
abs/2007.08501, 2020. 4

[19] Tamar Rott Shaham, Tali Dekel, and T. Michaeli. Singan:
Learning a generative model from a single natural image.
IEEE International Conference on Computer Vision, 2019.
2, 4

[20] Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani.
Ingan: Capturing and remapping the ”dna” of a natural im-
age. arXiv preprint arXiv: 1812.00231, 2018. 2, 4

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2023. 4

[22] Yael Vinker, Eliahu Horwitz, Nir Zabari, and Yedid Hoshen.
Image shape manipulation from a single augmented training
sample. IEEE International Conference on Computer Vision,
2020. 2, 5

[23] Qian Wang, Yiqun Wang, Michael Birsak, and Peter Wonka.
Blobgan-3d: A spatially-disentangled 3d-aware generative
model for indoor scenes. arXiv preprint arXiv: 2303.14706,
2023. 1, 2

[24] Weilun Wang, Jianmin Bao, Wengang Zhou, Dongdong
Chen, Dong Chen, Lu Yuan, and Houqiang Li. Sindiffu-
sion: Learning a diffusion model from a single natural im-
age. arXiv preprint arXiv: 2211.12445, 2022. 2, 4

[25] Yujie Wang, Xuelin Chen, and Baoquan Chen. Singrav:
Learning a generative radiance volume from a single natu-
ral scene. arXiv preprint arXiv: 2210.01202, 2022. 2

[26] Shangzhe Wu, Tomas Jakab, Christian Rupprecht, and An-
drea Vedaldi. Dove: Learning deformable 3d objects by
watching videos, 2022. 5

[27] Yunzhi Zhang, Shangzhe Wu, Noah Snavely, and Jiajun Wu.
Seeing a rose in five thousand ways. Computer Vision and
Pattern Recognition, 2022. 1, 2, 5

[28] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks, 2020. 5

[29] Yingzhao Zhu, Man Li, Wensheng Yao, and Chunhua Chen.
A review of 6d object pose estimation. In 2022 IEEE 10th
Joint International Information Technology and Artificial
Intelligence Conference (ITAIC), volume 10, pages 1647–
1655, 2022. 1

8

	. Introduction
	. Related Work
	. Scene Layout Modeling
	. Generative Modeling on a Single Image

	. Method
	. Geometry Modeling
	. Layout Modeling
	. Adversarial Training
	. Training Details

	. Experiment
	. Conclusion

