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Abstract

Due to the tremendous cost in rolling out polices and collecting data in environ-
ments, offline Reinforcement Learning (RL) algorithms have emerged to use static
data sets for training. Specifically, as offline data set can be limited, a family of
offline RL algorithms aims to use a dynamics model to generate synthetic data in
the environment and incorporate the synthetic data into training. This family is
called model-based offline RL. A recent work proposes a new model-based offline
RL algorithm, COMBO, that induces conservatism in evaluating real and synthetic
data. COMBO has shown promising results in standard offline RL benchmarks and
tasks that requires generalization. However, model-based offline RL algorithms,
including COMBO, mostly assumes access to a large labeled data set with reward.
But in real settings, especially when collecting data in the real world, it is common
to have only limited expert data labeled with rewards that targets a task. Besides,
there are abundant noisy, unlabeled, and task-irrelevant data in the same environ-
ment that is mostly left unused. However, the unlabeled data can provide valuable
information on the environment dynamics. Therefore, in this paper, we propose
several methods to incorporate the unlabeled data set into the training pipeline for
model-based offline RL. And we specifically integrate these methods into COMBO
and test their performance on two standard offline RL benchmark tasks (Hopper
and Walker2D) from D4RL. The evaluation results show that our methods are able
to reach a better performance with 10k expert labeled data and 1 million random
unlabeled data than the standard COMBO algorithm with 2 million of expert and
medium labeled data. This suggests that our methods successfully learn a better
dynamics and conservatism during training by adding in unlabeled data. Further,
our proposed approach achieves more robust results than the recent unlabelled data
sharing (UDS) method. This framework has potential to perform well in many
other offline RL settings like multi-task learning and meta learning, which can be
explored in future studies.



1 Introduction

Reinforcement learning (RL) mainly consists of an agent acting in an environment which contains a
state space and an action space. The agent acts according to a policy π(a|s) that predicts the next
action given the current state. The qualify of a particular action is judged by the reward r. The goal
of reinforcement learning is to learn a policy π that maximizes the expected reward over time.

In reinforcement learning, the agent is intuitively learning from experience. It can try a series of
actions, see the results (rewards), and adjust its behavior based on the results. The bottle-neck in this
process is often in rolling out policies in the environment and collecting data, especially in real-world
environments. Therefore, a family of RL algorithms is developed that learns from static data sets
with reward annotation. This family of approaches is called offline RL.

More formally, standard RL is modelled as a Markov decision process, M = (S,A, P, γ,R), where
S and A denote the state space and action space, P (s′|s, a) models the state dynamics, γ ∈ [0, 1] is
the discount factor, and R corresponds to the reward function that measure the quality of an action at
a state. Offline RL tackles this problem of learning a policy π(a|s) using a static labeled data set L,
usually generated by a behaviour policy πβ(a|s) of varying qualities ( Yu et al. (2022a)). Most RL
algorithms assumes the existence of the reward function R and attempts to learn the state dynamics
P from the labeled data set L.

However, in many cases, the assumption of having a large labeled data with reward annotation is
too strong. A much more realistic case is when we have a small amount of high-quality labeled
task-specific data with a large amount of unlabeled task agnostic data that does not contain reward
information. In many cases, labeling reward is costly especially if the reward needs to be annotated
by humans. But collecting random trajectories from an environment is often inexpensive and fast. For
example, if we want to train a robot to open and close a microwave, we might obtain some data of the
robot attempting the task under the supervision of a human manipulator. But we are more likely to
have much more background data that are either structurally related or provides information about the
environment. For instance, we might have more data of the robot opening and closing other objects
like a door, or a drawer. These data sets wouldn’t be labeled with the right reward annotation specific
to opening and closing microwaves but they can still be leveraged for training the agent. This setup
raises the important question of how we can utilize unlabeled data for training offline RL agents.

Currently, there exists plenty of offline RL algorithms. But they all require the offline data sets
to be labeled. In this case, the vast amount of unlabeled data is left unused. However, although
unlabeled data sets do not contain reward, they provide valuable information about the world dynamics.
Therefore, in this paper, we aim to incorporate unlabeled data in offline model-based RL, specifically
in Conservative Offline Model Based Policy Optimization (COMBO) by Yu et al. (2022b), which will
be discussed below. To simulate the scenario of having a small labeled data set and a large unlabeled
data set, we use a combination of expert data and random data from the Walker2D and Hopper
environments from D4RL ( Fu et al. (2021)). We will start with a literature review of prior works,
experiment with some existing approaches, propose a novel method, and analyze their effectiveness.

2 Related Work

2.1 Leveraging Unlabeled Data

As mentioned, offline RL considers the challenge of learning a good policy from a static data set
without the need to roll out policies in the environment. It has achieved promising results in numerous
domains like NLP ( Jaques et al. (2019)), healthcare ( Wang et al. (2018)), and robotics ( Rafailov
et al. (2021)). The main issue with a naive offline RL algorithm is usually the distributional shift
between the learned policy and the behaviour policy ( Yu et al. (2022a)). For instance, many offline
RL algorithms will overestimate value functions on out-of-distribution (OOD) transitions from the
data set, biasing the agent to chase unreliable OOD actions. To tackle this problem, many prior works
have tried to constrain the learned policy in some way. Some of these approaches include policy
regularization ( Ran et al. (2023)), conservative value functions like CQL ( Kumar et al. (2020)), and
model-based training with conservative penalties like COMBO ( Yu et al. (2022b)). However, all
these prior works assume access to a large labeled data set. Here, we want to study how unlabeled
data can be leveraged into existing offline RL framework.
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In using unlabeled data for offline reinforcement learning, prior works have attempted to tackle this
problem via directly imitating expert trajectories like in adversarial imitation learning frameworks
(GAIL) ( Ho and Ermon (2016)), indirectly learning reward functions from expert data using in-
verse RL ( Ng and Russell (2000) Konyushkova et al. (2020)), or learning a reward classifier that
discriminates successes and failures ( Eysenbach et al. (2021)). Moreover, Xu and Denil (2019)
argued that reward learning can lead to agent exploiting errors in the reward model to achieve high
reward behaviors that do not correspond to intended task. These reward delusions are common in
reward-prediction methods and can lead to unintended and even dangerous behaviours. On the other
hand, GAIL and discriminatory methods tend to suffer the opposite problem, where the discriminator
learns to trivially distinguish agent and expert behavior, in effect resulting in a reward prediction that
produces low reward regardless of the input state. Because of these reasons, Xu and Denil (2019)
proposed to use positive-unlabeled learning, which concerns the problem of learning classifiers from
positive data and unlabeled data to train an accurate reward model. These reward prediction methods
have succeeded to varying degrees.

However, Yu et al. (2022a) showed that these complicated reward prediction methods may be
unnecessary. They showed that simply setting the reward of all unlabeled data to zero (UDS)
is effective both in practice and in theory. Yu et al. (2022a) proved that UDS guarantees policy
improvement and proposed a variant called conservative data sharing (CDS) by reducing reward
bias through re-weighting data. Formally, UDS trains any offline RL method on an effective data
set given by Deff = L ∪ {(sj , aj , s′j , 0) ∈ U}. In fact, UDS outperforms sophisticated reward
prediction methods in many single task and multi-task settings. Our paper is a natural extension of
the UDS method but integrates this line of thought naturally into model-based conservative learning
approaches. Basically, we propose to train a reward prediction model based on expert data and then
fill in the reward predictions for unlabeled data. During training, we build in pessimism on these
reward predictions by pushing down the value functions on unlabeled data. We will show that this
simple approach is very effective in practice and may surpass the UDS method. Intuitively, these two
methods are very similar in principle. UDS can be seen as forcing the worst-possible pessimism with
regard to the unlabeled data set as all rewards are marked as zero. However, our approach still builds
in pessimism on unlabeled data points but makes the process more dynamic and adaptive.

Further, although we focus on single-task environments in this project for simplicity, data sharing
across different tasks has been found to be effective as well. It improves performance drastically in
multi-task settings ( Kalashnikov et al. (2021) Yu et al. (2021)) and in meta-RL settings ( Dorfman
et al. (2021)). We hypothesize that our proposed method will also work well in these settings but
leave the experiments to future works. Nevertheless, these papers show the importance of leveraging
unlabeled data for offline reinforcement learning.

2.2 Conservative Offline Model Based Policy Optimization (COMBO) ( Yu et al. (2022b))

As discussed above, a main paradigm shift from online to offline RL is to incorporate conservatism
or regularization to prevent over-estimation on value functions. Model-free offline RL directly adds
conservatism into model training processes, which only learns from offline data set and can be too
conservative and fail to generalize. In contrast, model-based offline RL first learns a dynamics model
based on offline data set which can generate synthetic data. The training process then leverage both
the offline data and synthetic data, conservatively estimating the value functions for each state-action
data point. Therefore, model-based algorithms have a higher potential for generalization and solving
new tasks. However, all previous model-based offline RL algorithms rely on some uncertainly
estimation in conservative evaluation such as in Yu et al. (2020b) and Kidambi et al. (2021). But in
practice, these uncertainty estimation methods can be unreliable.

So the COMBO paper proposes a new model-based offline RL algorithm COMBO, which doesn’t
need access to uncertainty estimation oracles. Instead, it employs actor-critic method using both
offline and synthetic data while penalizing Q-values of state-action tuples from synthetic data. In
addition, the paper theoretically proves that the Q-function learned by COMBO is a lower bound on
the true Q-function, and it is less conservative than Q-functions learned by model-free counterparts
such as CQL ( Kumar et al. (2020)) as seen in Figure 1. Finally, the paper experiments COMBO
on three kinds of tasks: (1) tasks that require generalization, (2) tasks with high-dimensional image
observations, and (3) standard offline RL benchmarks. The empirical results show that COMBO
out-performs prior methods in most tasks and can generalize to high-dimensional vision-based tasks.
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Figure 1: Comparing the estimated value function from COMBO (model-based) with CQL
(model-free). COMBO learns a conservative value function but is less conservative than CQL.

As a promising offline RL algorithm, COMBO will act as the baseline in our study. We will try to
improve its performance by exploring different ways of leveraging unlabeled data into the pipeline of
COMBO. We will discuss this process in detail in the next section.

3 Approach

3.1 Data sets

D4RL ( Fu et al. (2021)) is an open-source benchmark for offline RL. It provides standardized
environments and data sets for training and evaluating offline RL algorithms. In this paper, we
use two tasks Walker2D and Hopper in D4RL to experiment our proposed methods. These two
environments are based on oepneAI’s Gym-Mujoco tasks that are wildly used by prior works in
offline RL like by Fujimoto et al. (2019) and Wu et al. (2019).

Specifically, the agent in Walker2D is a two dimensional twp-legged figure with four main body
parts. And the main goal is to coordinate all body parts to move in the forward direction by applying
torques on different hinges. The agent in Hopper is a two-dimensional one-legged figure with four
main body parts. Its goal is to apply torques to hinges that makes it hop in the forward direction
( Durrant-Whyte et al. (2012)). Note that the Walker2D environment is somewhat an extension of
the Hopper environment and is a bit more difficult. We present two images of the two environments
below for visualization.

Figure 2: The Walker2D (left) And Hopper (right) Environments.

Note that the data in D4RL are all labeled with rewards. But our problem setting consists of labeled
expert data and irrelevant unlabeled data. To resemble this setting, for each task, we use 10k labeled
expert data (s, a, s′, r) ∼ L from a policy trained with SAC to completion and 1 million random
unlabeled data from a random policy with rewards removed (s, a, s′) ∼ U.

In addition, the reward calculation in our data sets is always normalized, where 0 represents the worst
possible reward from randomized data and 100 represents the best possible reward from expert data.
Note that it is possible to exceed 100 if the learned policy is even better than the provided policy.
Having detailed our data sets, we can now discuss our main approaches.
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3.2 Incorporating unlabeled data set into COMBO

Let’s first clarify the notations in this problem setting. We are given a labeled data set L and an
unlabeled data set U. And the dynamics model is decoupled into reward prediction and next-state
prediction: R(r | s, a) and P(s’ | s, a) respectively. As we are using COMBO as a building block for
our methods, we will state the COMBO algorithm here for future reference:

Algorithm 1 Conservative Offline Model Based Policy Optimization (COMBO)

1: Train dynamics model R and P using L
2: while training do
3: Roll out dynamics model for model data M
4: Conservatively evaluate critics:
5: Qπ := argminQE(s,a,s′,r)∼L∪M [(Q(s, a)− (r + γE[Q(s′, a′)]))2] +

αE(s,a)∼M [Q(s, a)]− αE(s,a)∼L[Q(s, a)]
6: Improve policy π based on updated critics
7: end while

The intuition behind the COMBO algorithm is that it bakes in pessimism with respect to the model-
generated data M . It pushes down on the predicted Q-values on M while pushing up on the predicted
Q-values on real labeled data. This allows COMBO to conservatively model the value function using
both the offline data set and the simulated data set from the model and prevents overestimation on
out-of-distribution states. On a higher level, COMBO consists of 3 parts:

1. Dynamics (state and reward) Training
2. Critics Training
3. Conservative Policy Evaluation

This project explores different ways to incorporate unlabeled data into these three parts. Based on the
usage of unlabeled data, we proposes the following methods:

1. Baseline 1 (COMBO with no data sharing):
• Run COMBO on labeled data set L only.

2. Baseline 2 (naive reward prediction):
• Use L and U to train dynamics model to predict next state P (s′|s, a).
• Use L alone to train a reward model R and use R to fill in the rewards for data in U.
• Run COMBO on L and U.

3. Variant 1 (only use unlabeled data for training state dynamics):
• Use L and U to train dynamics model to predict next state P (s′|s, a).
• Use L alone to train a reward model R.
• Run COMBO on L alone.

4. Variant 2 (UDS):
• Set the reward of all unlabeled data in U to 0.
• Then combine L and U to run COMBO on them.

5. Variant 3 (reward prediction with built-in pessimism):
• Use L and U to train dynamics model to predict next state P (s′|s, a).
• Use L alone to train a reward model R and use R to fill in the rewards for data in U.
• Run COMBO on L and U with built-in pessimism on U (E(s,a)∼L∪U ):

3.3 Experimental Details

We balance the labeled and unlabeled data sets during dynamics training by up-sampling. Otherwise,
unlabeled data set completely dominates and the dynamics model would learn noisy transitions. For
all models, we use the Adam optimizer for optimization. When training the critics with unlabeled
data, a batch contains 1/4 model data, 1/4 unlabeled data, and 1/2 labeled data. If not using unlabeled
data in training critics, we use a even split between model and labeled data. And all model backbones
are MLPs that follow the COMBO paper.
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4 Result

First, we present the average evaluation reward during training for both environments. Since rein-
forcement learning is often highly stochastic, we present these training curves using smoothed data
points from tensorboard.

Figure 3: Average evaluation reward during training for Walker2D environment for all five methods.

From this figure, we can see that both UDS (Variant 2) and reward prediction with built-in pessimism
(Variant 3) are very effective in leveraging unlabeled data set. They present a large increase from
the baseline method that relies solely on labeled data. Further, naive reward prediction and labeling
(Baseline 2) does not work at all in this environment. This aligns with the conclusion from the UDS
paper by Yu et al. (2022a). Lastly, using unlabeled data U only for training the state dynamics
(Variant 1) is useful in itself as it surpasses the baseline 1 method. However, it is more stochastic and
its performance is still worse than other two variants.

Figure 4: Average evaluation reward during training for Hopper environment for all five methods.

This figure of the training curves from the Hopper environment is more stochastic. In particular, we
see that the two curves for baseline 1 and variant 2 both suddenly decreases in the middle of training.
We hypothesize that this is due to model over-fitting and thus we ignore the data points after the
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peak for evaluation. Realistically, we can easily incorporate some form of early stopping to avoid
this over-fitting behaviour. Nonetheless, we can see that variant 3, which is reward prediction with
built-in pessimism works extremely well and is almost triple the performance of baseline 1. Using
UDS also performs quite well but still falls behind variant 3 significantly. Again, we can confirm that
using unlabeled data set for training state dynamics alone is useful while naive reward prediction
tends to over-estimate and performs poorly.

Next, we summarize the evaluation results in the table below. For the evaluation metric, we use the
average normalized evaluation episode reward in the last 100 training epochs, where the policy has
likely converged. And as mentioned above, we ignore the data points after the sudden decrease in
performance in the Hopper environment.

Table 1: Evaluation results
Walker2D Hopper

Baseline 1 82.372± 10.187 39.918± 16.656

Baseline 2 −0.167± 0.017 29.653± 9.960

Variant 1 100.794± 9.877 55.355± 9.292

Variant 2 108.534 ± 1.611 66.466± 16.027

Variant 3 106.064± 5.444 95.167 ± 8.3813

Our main result is that reward prediction with built-in pessimism (Variant 3) and UDS (Variant
2) both work very well. They demonstrate the effectiveness of leveraging unlabeled data in an
offline RL setting. Using unlabeled data in the correct way can lead to roughly 30% performance
increase in Walker2D and roughly 137% performance increase in Hopper. In addition, our proposed
reward-prediction with pessimism (Variant 3) is more robust to over-fitting and works 43% better
than UDS in the Hopper environment.

Further, we confirmed that naive reward prediction does not work at all as it leads to overestimated
value functions on unlabeled data. And using unlabeled data to train the state dynamics alone is also
useful for learning a better policy, but it never achieves comparable performance where unlabeled
data is also used for critics training and policy evaluation.

Lastly, the original COMBO paper reports a performance of 103.3 using 2 million medium-expert
data on Walker 2D ( Yu et al. (2022b)), which is less than our result of 108.5. This shows that much
less reliable data (10k expert) with a large random data (1M random) has the potential to perform
better than using a huge amount of medium and expert data. Similarly, in the paper by Yu et al.
(2022a), CQL plus UDS was able to achieve 81.5 using the same data set setup in Hopper. But our
proposed approach achieves an even higher 95.2 performance, which may demonstrate the superiority
of our method over pre-existing approaches applying UDS to model-free methods.

5 Discussion and Future Research

Although our initial result looks very promising, there are a number of limitations that naturally
lead to many future research paths. First, we need to further investigate into over-fitting in the
Hopper environment. We might try stronger regularization and different seeds to see if the over-fitting
behaviour stops. Second, as we observed in the plots, training in reinforcement learning is very
stochastic. Due to limited time and computing resources, we weren’t able to repeat an experiment
multiple times as each experiment takes about 10 hours training end-to-end. Thus, we would need
to use different random seeds to repeat the experiment multiple times to confirm the robustness and
validity of our result. Similarly, we only tested our methods on two standard environments. One
future research is to test our approaches on more environments to study our methods’ strengths and
weaknesses.

Further, our problem setting naturally applies to multitask learning, where it is even more likely to
have a very limited number of task-specific expert data and a very large number of task-agnostic data
and shares some limited structural similarities. Thus, one very natural further research direction is to
apply this method to multitask environments. For example, we can experiment on the Meta-World
( Yu et al. (2020a)) and the Antmaze ( Fu et al. (2021)) environments. In addition, there are many
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combinations of labeled and unlabeled data we can explore. For example, we can check whether
using medium-level data set in place of expert-level replays will decrease performance and whether
using medium-level data set transition in place of random rollouts will increase performance. Lastly,
we can also experiment with or incorporate Conservative Data Sharing (CDS) in Yu et al. (2021),
which has shown promising results for using unlabeled data.

6 Conclusion

In this project, we proposed a novel method of incorporating unlabeled data into model-based offline
reinforcement learning that naturally fits into the COMBO framework. Specifically, we train a reward
model on the expert labeled data and fill in reward for unlabeled data points. Then, we push down
on the value function predictions on the unlabeled data set, building in pessimism with respect to
predicted rewards. We demonstrated that this method works very effectively across two standard
offline RL benchmarks - Walker2D and Hopper. Our proposed method works at least as well as
unlabeled data sharing (UDS) and has the potential to be more robust and reliable. Further, it surpasses
some state-of-the-art approaches like using COMBO alone on a large labeled data and using UDS
with conservative Q-learning. In addition, we confirmed that using naive reward prediction works
poorly and demonstrated that using unlabeled data set correctly is crucial in model-based offline
RL. As we discussed before, tackling the problem of leveraging unlabeled data sets has important
implications for many domains of offline RL. Our project contributes to this line of work. In addition,
our initial experiments give way to many other potential future research areas. In particular, we
should confirm the usefulness and robustness of our method across more tasks to learn its strengths
and weaknesses. And future research can explore and evaluate how our method can be applied to
multi-task learning and meta-learning. We conclude that our approach shows promising results for
incorporating unlabeled data into offline reinforcement learning.

7 Code from other sources

In this paper, in the process of implementing various approaches and the environment, a few existing
repositories gave us inspirations and references.

1. D4RL Environment: We use this repository to set up our Walker2D and Hopper environ-
ments. D4RL is a standard benchmark for reinforcement learning and contains many other
tasks. It is well-studied by a myriad of other researchers and so is suitable for our study.

2. COMBO Implementation: We use this repository for the baseline COMBO implementation.
The repository largely follows the implementation mentioned in the original COMBO paper.
For any other approaches involving the use of unlabeled data sets, we modified and innovate
on this existing code base.

8 Team Contributions

The contribution of this paper is split evenly between the group members. The original idea was
from a discussion in the office hour with the head TA, Rafael Rafailov. Then the team members,
Tommy and Frank, modified an existing implementation of COMBO together to support our methods.
Frank then ran the experiment on Walker2D environment, while Tommy ran it on Hopper. Finally,
we combined our experimental results and jointly wrote and edited the poster and paper.
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