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Project Overview
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Methods & Experiments Results
● Offline RL learns from static datasets that require 

reward annotation.
 

● In many cases, labelling reward is costly.
 

● Common to have a small amount of labelled 
task-specific data and a large amount of 
unlabelled task-agnostic data (state, action, 
next_state) without reward.

  

● Problem Statement:  leverage the use of 
unlabelled data in offline model-based RL, 
specifically in Conservative Offline Model Based 
Policy Optimization (COMBO).

 

● Previous Literature: in model-free methods, 
reward prediction performs poorly, setting all 
unlabelled data’s reward to 0 (UDS) is effective.

 

● COMBO consists of 3 parts:
○ Dynamics (state & reward) Training
○ Critics Training
○ Conservative Policy Evaluation

 

● This project explores how to incorporate 
unlabeled data into these three parts.

 

● Main Results: UDS and reward prediction with 
built-in pessimism both work very well (~30% 
improvement from baseline COMBO method)! 

● D4RL Benchmark for Offline RL.
 

● Uses the Walker2D and Hopper tasks.

 

● 10k labelled expert samples (s, a, s’, r) ~ L from a 
policy trained with SAC + 1M random unlabelled 
samples (s, a, s’) ~ U from a random policy.

 

● Resembles the case unlabelled data is of low 
quality and even irrelevant to the target task.
 

● Metric: Average normalized evaluation episode 
reward in the last 100 training epochs.

 

● We use the Adam optimizer. All model backbones 
are MLPs that follow the COMBO paper.
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COMBO (Baseline 1) 82.372 10.187 39.918 16.656

Reward Pred. (B2) -0.167 0.017 29.653 9.960

Variant 1 100.794 9.877 55.355 9.292

Variant 2 108.534 1.611 66.466 16.027

Variant 3 106.064 5.444 95.167 8.381

● COMBO in detail, given labeled data L and policy  π :

1. Train dynamics model      on L

2. Iterate:

a) Rollout dynamics model for model data M

b) Conservatively evaluate critics:

  

c) Improve policy π based on updated critics
 

● Baseline 1 (COMBO with no data sharing): Run COMBO on 10k expert labelled data L only.
 

● Baseline 2 (naive reward prediction): 

○ Use L and U to train dynamics model to predict next state (s’ | s, a). 
○ Use L alone to train a reward model R and use R to fill in the rewards for data in U.
○ Run COMBO on L and U.

 

● Variant 1 (only use unlabelled data for training state dynamics): 
○ Use L and U to train dynamics model to predict next state (s’ | s, a). 
○ Use L alone to train a reward model R. Run COMBO on L alone.

 

● Variant 2 (UDS): 
○ Set the reward of all unlabelled data in U to 0. Then combine L & U to run COMBO on them.

 

● Variant 3 (reward prediction with built-in pessimism): 
○ Use L and U to train  dynamics model to predict next state (s’ | s, a). 
○ Use L alone to train a reward model R and use R to fill in the rewards for data in U.
○ Run COMBO on L and U with built-in pessimism on U ( step 3 second line): 

Training Curves for Walker2D Environment:
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Discussions:
 

● Reward prediction with built-in pessimism is very effective for leveraging unlabelled data!
 

● COMBO archives 103.3 using 2M medium-expert data on Walker2D. CQL+UDS achieves 81.5 
in the same setup on Hopper. → Our method is potentially superior!

 

● Using unlabelled data to train state dynamics is useful. Naive reward prediction doesn’t work.
 

● Variant 2 (UDS) doesn’t need built-in pessimism as we already assign lowest reward to 
unlabelled data. Its performance is more variable.

 

Future Research:
 

● Needs further investigation on overfitting in Hopper environment.
 

● Test on more environments to figure out the methods’ strength and weaknesses.
 

● Incorporate CDS into the framework.
 

● Experiment with multitask learning environments as this approach naturally applies.
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*Note that we discard the data after the sudden drop in baseline 1 and variant 2.


