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Abstract

Conditional average treatment effect (CATE) estimates have been increasingly used

in policy decision-making as they can profile and prioritize individuals who receive

the most benefits from a treatment. This paper studies the specific case of an

imbalanced covariate in the data set. We posit that standard parametric and non-

parametric methods lead to disparate performance for the minority and majority

groups, creating bias in CATE estimates. In this paper, we first provide theoreti-

cal derivations for reweighting methods in a parametric setting, which will provide

deeper intuitions about the problem. Then, we propose a repository of tools that

address the issues of imbalanced covariates, including reweighting in causal forests

and data augmentation through generative modeling. We demonstrate the effec-

tiveness of these methods through extensive simulation studies. Finally, we apply

these novel methods to a real-world data set in the case of job training programs.
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1 Introduction

From job training initiatives to housing choice vouchers to educational programs,

many empirical questions in economics require an evaluation of the causal effects of in-

terventions or policies (Imbens and Wooldridge 2009). The key problem studied in causal

inference is estimating a treatment’s effect on a set of people, usually measured through

some outcome-dependent variable of interest. Classic approaches focus on directly com-

paring the treated units’ average outcome and the control units’ average outcome. Whilst

average treatment effect (ATE) estimates can inform the global effectiveness of the treat-

ment intervention, it does not provide enough granularity for more detailed analysis,

especially when heterogeneous treatment effects exist. For instance, suppose half of the

participants in a randomized controlled experiment receive a positive effect from the

treatment, but the other half receive negative treatment effects; we may observe an ATE

of around 0. However, the treatment can have strictly positive impacts by only allocating

the treatment to the participants who would benefit. As such, studying individual-level

effects is crucial.

Indeed, there has been growing interest in estimating and understanding heteroge-

neous treatment effects in experimental and observational studies. Recent literature in

this area has made profound impacts in the field of program evaluation (Abadie and Cat-

taneo 2018), where policy intervention decisions are made based on conditional average

treatment effect (CATE) estimates. Contrary to the average treatment effect, CATE is

concerned with the average treatment effect conditional on an individual’s covariates such

as age, gender, and race. These CATE estimates can inform “prioritization rules” that

allocate interventions to individuals that would benefit the most (Hill 2011; Wager and

Athey 2018; Künzel et al. 2019). In theory, precisely determined CATE-based rules could

be the gold standard for selecting the prioritizing interventions (Manski 2004; Yadlowsky

et al. 2023).

Thus, these CATE estimates can have significant societal repercussions when applied

to personalized intervention decisions. This paper explores the specific case where an im-

balanced covariate leads to disparate CATE estimation performance. When the CATE
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estimation is much worse on a minority group than a majority group, the induced prioriti-

zation rule will make more mistakes on the minority group members, adversely impacting

their welfare.

Motivated by this, we study the problem of CATE estimation with imbalanced co-

variates in detail and propose methods that mitigate the inferior performance on the

minority group. Our main contributions are three-fold:

1. We provide a motivating example and derive theoretical results for reweighting

methods with parametric models. This provides intuitions for the problem of im-

balanced covariates in CATE estimations.

2. We present a repository of tools for handling imbalanced data in causal inference

with non-parametric methods and evaluate their performance extensively through

simulation studies.

3. We demonstrate the effectiveness of the proposed methods by applying them to a

real-world data set in the context of job training programs.

1.1 Preliminaries and Problem Set-up

In the usual causal inference set-up, we observe a training data setD = (Yi, Xi,Wi)1≤i≤N ,

where Yi is the observed outcome, Xi are the covariate vectors, and Wi is the treatment

indicator. Considering binary treatment in this paper, Wi = 1 means that the unit i is

exposed to treatment, and Wi = 0 means that the unit i is in the control group. For

instance, Wi could be eligibility for a job training program, Yi could be income in the

next year, and Xi could be other covariates like age, race, and gender.

Using notation from the potential outcomes framework (Imbens and Rubin 2015), we

denote Yi(1) to be the outcome of unit i if it were treated and Yi(0) to be the outcome

of unit i if it were controlled. The fundamental problem of causal inference is that we

only observe one outcome, namely Yi(Wi), and not the other (Holland 1986). Through-

out this paper, we assume common causal inference assumptions of unconfoundedness,

consistency, and positivity (Imbens and Rubin 2015).
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In econometrics, we often care about the average treatment effect (ATE), which is

denoted as τ p = E[Yi(1) − Yi(0)]. Although a large corpus of causal inference literature

focuses on estimating average treatment effects (Imbens and Rubin 2015; Pearl 2000;

Morgan and Winship 2014), the main focus of this paper is conditional average treatment

effects (CATE). The CATE is defined as

τ(x) := E[Y (1)− Y (0) | X = x], (1)

which potentially uncovers the heterogeneous treatment effects based on each unit’s at-

tributes Xi.

Estimation of the CATE function can be helpful for policy decision-making. For

example, researchers and policymakers may use the CATE function to assign future units

to their optimal treatment, e.g., W opt
i = 1τ(Xi)≥0 (Athey and Imbens 2015). In addition,

the CATE function induces a prioritization rule that allocates the treatment in decreasing

order of τ(Xi). When resources are limited, individuals with the largest treatment effects

would be treated first. Thus, by estimating the CATE function, researchers can uncover

populations that do benefit and make better-informed decisions.

However, when a covariate is imbalanced, we postulate that the estimation accuracy

of the CATE function on the minority group would be significantly lower than on the

majority group. This implies that the induced prioritization rule will likely make more

mistakes for the minority group. Formally, suppose that X1
i , the first covariate, is a

protected variable. For example, it could be age, race, gender, or nationality. We further

assume that τ(x) is not independent of X1, which ensures that our variable of interest has

a nontrivial effect on the CATE. We first convert X1 into a dummy variable by grouping

related classes for categorical variables or grouping based on some threshold for continuous

variables. Then, X1 is defined to be imbalanced if P(X1 = 0)−P(X1 = 1) > δ, for some δ

significantly larger than 0 but below 1 (e.g. δ = 0.5). This allows us to partition the data

set into two groups, DA and DB, where DA contains all minority units i whose X1
i = 1

and DB contains all majority units j whose X1
j = 0. Here, we stress that covariate

imbalance is inherent in the observed distribution of X1, and covariate imbalance does
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not imply different covariate distributions between the treatment and control groups.

Let τ̂ be an estimator for τ . Using standard methods, we hypothesize that the estima-

tion performance (e.g., Mean Squared Error) of τ̂ is likely to be significantly worse on DA

than on DB. That is, 1
|DA|

∑
Xi|X1

i =1(τ̂(Xi) − τ(Xi))
2 > 1

|DB |
∑

Xi|X1
i =0(τ̂(Xi) − τ(Xi))

2.

So, the natural research questions are:

1. When there exists an imbalanced covariate of interest, do we expect the

CATE estimation performance to be much worse on the minority group?

2. If so, what are some methods that can balance the CATE estimation

performance for the minority group with the majority group?

3. Is it possible to balance estimation performance between the two groups

without significantly worsening the performance on the majority group?

There may be many reasons why researchers care about the worse estimation perfor-

mance on the minority group. For instance, the minority group may have been historically

marginalized in related policies; there may be sampling bias, and the minority group is

less represented in the data set compared to the population; or the lack of treatment may

make the minority group particularly vulnerable. Throughout this paper, we will con-

tinuously present simulation studies, methodologies, and their results targeted at each of

these three questions. Next, we examine related works and put these research questions

into a broader context.

1.2 Literature Review

Parallel to the growing interest in CATE estimations, economists and social scientists

have gradually adopted machine learning methods for causal inference. Machine learning

methods can be powerful where there may be many attributes of a unit relative to the

number of observations and where the structural relationship between the covariates and

the treatment effects are unknown (Athey and Imbens 2015). However, traditional ma-

chine learning algorithms typically minimize error rates without statistical properties like
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consistency, normality, and efficiency. In the specific case of identifying heterogeneous

treatment effects, novel methods have been developed, studied, and broadly used. These

methods utilize the power and generality of machine learning algorithms while allowing

some statistical properties to be assessed. Some notable methods include the “CATE-

generating transformation of the outcome” by Athey and Imbens (2015), the “generalized

random forests” by Athey et al. (2019), the “single tree algorithm,” the “two tree” algo-

rithm by Hirano et al. (2003), and the “X-learner” by Künzel et al. (2019). See Athey

and Imbens (2019) for a review of machine learning methods used in econometrics. This

paper will mostly use these non-parametric machine learning approaches to estimate the

CATE function.

In the context of imbalanced data, previous literature has focused mostly on the case

of class imbalance in causal inference, whether there are substantially more control units

than treatment units or whether the covariate distribution between control and treatment

groups is significantly different. Some examples include inverse propensity weighting

(Hirano et al. 2003), entropy balancing (Hainmueller 2012), and the X-learner (Künzel

et al. 2019). However, few previous works have explored the impact when one protected

variable is imbalanced. On the other hand, many techniques have been developed to tackle

imbalanced data issues in prediction tasks, like local case-control sampling (Fithian and

Hastie 2014), synthetic data augmentation (Chawla et al. 2002), and Yang et al. (2021).

However, in most cases, we cannot directly transfer these techniques in prediction tasks

to causal inference. Therefore, there exists a gap in methods that deal specifically with

covariate imbalance in estimating heterogeneous treatment effects.

Next, we delve deeper into existing methods for handling imbalanced data in different

contexts. Most of these methods can be broadly classified into two streams of approaches:

reweighting and data augmentation. Finally, we will briefly survey emerging literature on

fair estimation of treatment effects and summarize how our setting differs from previous

works.

Class imbalance between the treatment and control groups occurs most frequently

in observational studies because researchers often have access to large amounts of data
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that are not exposed to treatment. One common approach is to use inverse propensity

weighting (Hirano et al. 2003), where the average treatment effect is estimated using τ̂ p =

1
N

∑N
i=1(

Yi·Wi

ê(Xi)
− Yi·(1−Wi)

1−ê(Xi)
) and ê(X) is the estimated propensity score E[W |X]. However,

researchers have found that slight misspecification of the propensity score model can lead

to large biases in estimated treatment effects. Thus, Imai and Ratkovic (2014) proposed a

“covariate balancing propensity score” that models treatment assignment and optimizes

covariate balance between the treatment and control groups. This method mitigates

the potential effect of misspecification of the propensity score model and provides better

estimates. In a similar vein, Hainmueller (2012) proposed entropy balancing to re-weigh

the treatment and control groups that can satisfy a large set of pre-specified balance

conditions about known sample moments. Note that these methods focus mostly on

average treatment effects.

For heterogeneous treatment effects, Künzel et al. (2019) proposed the X-learner,

which estimates the CATE function using a three-step approach. It first estimates the

response functions and then imputes the treatment effects before aggregating them us-

ing a weighted average. This method still addresses the imbalance between treatment

and control units. In fact, there is a surprising lack of literature focusing on covariate

imbalance, in the sense that one protected variable has significantly fewer units for one

group than the other. Thus, this paper aims to address this gap directly by addressing

covariate imbalance.

In addition, notice that the first three methods mentioned to address class imbalance

are all re-weighting schemes that aim to balance the smaller and larger groups. In fact,

re-weighting methods have been popular in the machine learning literature to address

imbalance problems. For instance, Hashemi and Karimi (2018) investigates how common

machine learning algorithms perform differentially using weighted data vs. non-weighted

data. Further, “case-control sampling,” which originated in epidemiology by Mantel and

Haenszel (1959), samples uniformly from each class but adjusts the mixture of the classes

to ensure balance. Building upon that, Fithian and Hastie (2014) proposed local-case

control sampling, which uses a pilot estimate to preferentially select samples whose re-
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sponses are conditionally rare given their attributes. These two approaches are analogous

to re-weighting as locally difficult cases are selected more to fit the model. We should

also note that these machine learning methods are mainly for prediction tasks and can

only serve as inspirations in the causal inference setting.

In the paper by Lu and Liu (2022), the authors systematically investigated a weighted

regression adjustment method for the average treatment effect. They give greater weights

to units in the minority group and demonstrate that their re-weighting method is more

robust than regression adjustment with treatment-covariate interactions. They discovered

that the optimal weight for unit i is Wi

p12
+ 1−Wi

p02
, where p1 and p0 are the proportions of units

assigned to the treatment and control groups, respectively. Again, this work addresses

class imbalance rather than covariate imbalance. From the above reviews, we can see

that we need a systematic study of how re-weighting can be applied to estimating the

CATE function in imbalanced covariate cases.

Orthogonal to re-weighting schemes in machine learning and causal inference, syn-

thetic data augmentation has been popular. In particular, SMOTE, or “Synthetic Mi-

nority Over-sampling Technique” (Chawla et al. 2002), has been widely used among ma-

chine learning researchers. SMOTE operates in the “covariate space” and over-samples

the minority class by creating synthetic data points. These synthetic units are introduced

along the line segments that join a minority unit and some of its minority class nearest

neighbors. Since this approach is again designed for classification problems, it is not

directly applicable to causal inference.

On the other hand, a recent paper on “Using Wasserstein Generative Adversarial

Networks for the Design of Monte Carlo Simulations” by Athey et al. (2021) uses a

WGAN to create synthetic data that adheres to the original data distribution for model

selection in causal inference. This allows researchers to limit the degrees of freedom

in Monte Carlo study designs and make more convincing comparisons between causal

identification approaches. However, this paper has not explored using the generated data

to augment the original data set. In the case of an imbalanced covariate, we can augment

the minority group using generated data from the WGAN, similar to the idea of SMOTE.
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In fact, with the rapid advancement of generative models, more works (Neal et al. 2020;

Qian et al. 2023) are being developed to benchmark causal inference methods and leverage

synthetic data for downstream applications.

Lastly, some previous works have examined optimal treatment assignment rules since

conditional average treatment effect estimation can be used to make better policy deci-

sions. For example, Hirano and Porter (2009) develops loss functions involving welfare

loss and regret loss and derives treatment assignment rules that asymptotically achieve

optimal outcomes. Similarly, Kitagawa and Tetenov (2018) assesses the Empirical Welfare

Maximization model, which formulates a treatment assignment policy by maximizing the

sample-based average social welfare across various potential treatment policies. Closely

related to welfare maximization models, recent literature also started to focus on issues of

fairness. For example, Kim and Zubizarreta (2023) studies the fair estimations of hetero-

geneous treatment effects and characterizes the trade-off between fairness and maximum

welfare. Liang et al. (2021) develops a framework for the fairness-accuracy frontier and

Viviano and Bradic (2024); Lei et al. (2023) study fairness in policy decision making.

Although we do not formalize a notion of fairness or welfare, we still contribute to

this line of work as our main motivation is to balance the CATE estimation performance

between a minority group and a majority group. In fact, as we will see in the rest of this

paper, the proposed methods generally have a parameter of choice (weight on minority

units, amount of synthetic data augmented) that produces a trade-off curve between the

two groups. Researchers and policy-makers can then analyze this trade-off using their

user-defined framework for fairness and welfare to pick the optimal point.

In summary, a surprising lack of literature specifically targets the covariate imbalance

issue in CATE estimations. This paper contributes to this novel yet important research

direction. Previous literature also inspires us to focus on two main approaches to answer

the research questions – reweighting methods and synthetic data augmentation. The

proposed methods are general and flexible enough to be applied to many contexts, and

this paper contributes to the growing literature on algorithmic fairness.



Linan (Frank) Zhao June 7, 2024 9

2 A Synthetic Example

To illustrate the problem setup of imbalanced covariates, we first construct a synthetic

example that will be used throughout this paper. We consider a randomized control

experiment setting. For each unit i, suppose the covariate vectorXi includes six covariates

(X1
i , X

2
i , · · · , X6

i ). The first three covariates are categorical and only take on the values

of 0 or 1. The last three covariates are continuous, and their ranges are in R. Specifically,

we denote X1 as the protected variable whose probability of being 1 is P (X1 = 1) = p, for

some p ∈ [0, 1]. This parameter p controls the level of imbalance as smaller values indicate

more imbalance in X1. Unless otherwise specified, p is equal to 0.1 in our examples. This

mimics the scenario in which the first covariate is imbalanced, and the number of data

points in the majority group (X1 = 0) is significantly more than in the minority group

(X1 = 1). The other two categorical covariates X2, X3 are balanced in the sense that

P (X2 = 1) = P (X3 = 1) = 1
2
. The continuous covariates X4, X5, X6 are all generated

from a unit normal distribution N (0, 1).

Since we assume a randomized control experiment setting, the treatment indicator W

is a Bernoulli random variable with P (W = 1) = π = 1
2
. Furthermore, we define the

CATE function as

τ(X) = X1 +X2 +X4 + (1−X1) ·X5. (2)

The CATE function non-trivially depends on the protected variable X1, and it also

depends on other categorical and continuous covariates. We include the interaction term

at the end to simulate the setting where the CATE functions for the minority and majority

groups are slightly different locally but still share many similarities. Indeed, we can see

that the CATE function is X1 + X2 + X4 for the minority group and X2 + X4 + X5

for the majority group. Without the interacting term, the functional form for the CATE

function would essentially be identical for both groups, hence making the problem trivial.

After specifying the CATE function, we define the outcome variable as

Y (X,W ) = max(
6∑

i=1

X i, 0) +W · τ(X) +N (0, 1). (3)
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This data generating process creates a data set D = (Yi, Xi,Wi)1≤i≤N , from which we

wish to estimate the CATE τ̂(X).

3 Re-weighting Method with Linear Models

To estimate the CATE function in Equation (2) given D, we assume that we can

construct and subsequently have access to the “scores” or pseudo-outcomes Γ̂i that are

nearly unbiased but potentially noisy proxies for the CATE:

E
[
Γ̂i | Xi

]
≈ τ (Xi) = E [Yi(1)− Yi(0) | Xi] . (4)

One choice for constructing these scores is inverse-propensity weighting (IPW) Γ̂i =

WiYi

π
− (1−Wi)Yi

1−π
. However, these scores can have large variances, so we can use its doubly-

robust counter-part (Robins et al. 1994):

Γ̂i = m̂ (Xi, 1)− m̂ (Xi, 0) +
Wi−ê(Xi)

ê(Xi)(1−ê(Xi))
(Yi − m̂ (Xi,Wi)) ,

e(x) = P [Wi = 1 | Xi = x] , m(x,w) = E [Yi(w) | Xi = x] ,
(5)

where e(x) is the propensity scores and m(x,w) represents the expected outcome given

a unit’s covariates and treatment assignment; and ê, m̂ are non-parametric estimates of

e,m. In randomized controlled trials, we can directly replace ê(x) with the probability

of treatment assignment π and Equation (5) becomes the Augmented IPW (AIPW)

estimator

Γ̂i = m̂ (Xi, 1)− m̂ (Xi, 0) +
Wi − π

π (1− π)
(Yi − m̂ (Xi,Wi)) . (6)

We assume that the non-parametrically estimated nuisance parameter m̂(Xi,W ) ≈

E[Yi(W )|Xi] for W ∈ {0, 1}. This represents the expected outcome given covariates and

treatment assignment. In a randomized trial, E[W |Xi] = π, and so the constructed

scores in Equation (6) satisfies Equation (4) whenever cross-fitting is used. Cross-fitting

(Chernozhukov et al. 2018) is the process of splitting the data sample into two halves,

where one is used for estimating the nuisance parameters, and the other is used for
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applying the score functions. This process helps to avoid “own observation” bias and

helps the constructed scores to adhere to Equation (4) (Yadlowsky et al. 2023).

Once we have access to these scores, we can regress them against the covariates X to

obtain an estimate of the CATE function. We start with the linear model Γ̂ ∼ Xβ. For

simplicity, let X be a n×7 matrix, where the last column contains all ones, and let β be a

7-dimensional column vector. We suppose that there are m observations in the minority

group. As such, E[m
n
] = p. Next, we can fit a linear model and assess its performance.

However, notice that in our synthetic example in Equation (2), the CATE function

is not globally linear, and the linear model would be misspecified. The CATE function

for the minority group would be X1+X2+X4, and the CATE function for the majority

group would be X2 +X4 +X5. Thus, when we fit the coefficients of a linear model, the

large sample size of the majority group would bias the coefficient of X5 to be closer to 1,

leading to lower MSE for the majority group and higher MSE for the minority group.

One straightforward way to tackle this imbalance in performance is to use a weighted

regression, similar to Lu and Liu (2022). We may assign weights α(Xi) to each observation

before running the linear regression. The simplest choice is α(Xi) = 1 for all units in the

majority group and α(Xi) = γ ∈ R+ for all units in the minority group. We are interested

in studying the estimation performances on both groups as the weight γ on the minority

group varies. Note that the weighting function α(Xi) induces a n×n diagonal matrix A,

where the diagonal entries are α(Xi).

Below, we first derive some theoretical results on this weighted linear regression. Then,

we run some simulations to confirm the theoretical intuitions numerically.

3.1 Theoretical Derivations

Using least squares, the coefficients of the weighted regression Γ̂ ∼ Xβ with weights

α(Xi) =


γ X1

i = 1

1 X1
i = 0

would be

β̂γ = argminβE[α(Xi)(Γ̂i −Xiβ)
2] = argminβ(Γ̂−Xβ)⊤A(Γ̂−Xβ). (7)
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The loss function (Γ̂ − Xβ)⊤A(Γ̂ − Xβ) can be written as Γ̂⊤AΓ̂ − 2β⊤X⊤AΓ̂ +

β⊤X⊤AXβ. Then, taking the derivative against β, we obtain −2X⊤AΓ̂ + 2X⊤AXβ.

Setting the derivative to zero, we see that β̂γ = (X⊤AX)−1X⊤AΓ̂. Therefore,

β̂γ = (X⊤AX)−1X⊤AΓ̂

= (X⊤AX)−1X⊤Aτ(X) + (X⊤AX)−1X⊤A(Γ̂− τ(X))

=

(
1

n
X⊤AX

)−1(
1

n
X⊤Aτ(X)

)
+

(
1

n
X⊤AX

)−1(
1

n
X⊤A(Γ̂− τ(X))

)
(8)

Let G = 1
n
X⊤AX, H = 1

n
X⊤Aτ(X), and D = 1

n
X⊤A(Γ̂ − τ(X)). Note that Gi,j =

1
n

∑n
k=1 α(Xk)X

i
k · X

j
k. Invoking the central limit theorem, we see that G − E[G]

d−→
1√
n
N (0,Σ). As long as E[G] is invertible, the delta method with the function f(·) being

matrix inverse gives

G−1 − E[G]−1 d−→ 1√
n
N (0, f

′
(E[G])⊤Σf

′
(E[G])). (9)

Thus, we can write G−1 = E[G]−1 + op(1) because f
′
(E[G])⊤Σf

′
(E[G]) is finite.

Similarly, we have that H = E[H] + op(1) by the central-limit theorem. In addition,

Robins et al. (1994) shows that the AIPW estimator Γ̂ is asymptotically normal under

some regularity conditions and when the nuisance parameters are cross-fitted. Thus,

D = 1
n
X⊤A(Γ̂− τ(X)) = op(1). As such,

β̂γ = (E[G]−1 + op(1))(E[H] + op(1)) + (E[G]−1 + op(1))op(1))

= E[G]−1E[H] + op(1) (10)

because c · op(1) = op(1) for a constant c and op(1) · op(1) = op(1), op(1) + op(1) = op(1).

By computing the expected value of the product of two random variables X iXj, we

can explicitly compute each entry of E[G]i,j using the underlying data-generating process.
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The full matrix E[G] is recorded in Appendix B.1. The inverse E[G]−1 is calculated as



pγ+1−p
pγ(1−p)

0 0 0 0 0 1
p−1

0 4
pγ+1−p

0 0 0 0 − 2
pγ+1−p

0 0 4
pγ+1−p

0 0 0 − 2
pγ+1−p

0 0 0 1
pγ+1−p

0 0 0

0 0 0 0 1
pγ+1−p

0 0

0 0 0 0 0 1
pγ+1−p

0

1
p−1

− 2
pγ+1−p

− 2
pγ+1−p

0 0 0 (γ−3)p+3
(1−p)(pγ+1−p)



. (11)

Similarly, we can evaluate E[H], which turns out to be

(
3pγ
2

2pγ+(1−p)
2

3pγ+(1−p)
4

pγ + (1− p) 1− p 0 3pγ+(1−p)
2

)⊤

. (12)

By Equation (10), β̂γ converges in probability to E[G]−1E[H] as the sample size grows

to infinity. Thus, βpop
γ = E[G]−1E[H], which we can now calculate as

βpop
γ =

(
1 1 0 1 1−p

pγ+1−p
0 0

)⊤

. (13)

In fact, we see that as n goes to infinity, we can expect the coefficients for all covariates

apart from X5 to be correct. The weights γ only affect the asymptotic coefficient β5 on

X5 since that is where the CATE function differs on the minority and majority groups.

In particular, we can see that as p decreases, the coefficient β5 gets closer to 1, indicating

the dominance of the majority group. However, as γ increases, this coefficient decreases,

which shows that the model is fitting the minority group more. Using the derived β

vector in Equation (13), the CATE estimate would be τ̂(X) = X1+X2+X4+ 1−p
pγ+1−p

X5

as the sample size grows to infinity.

Next, we calculate the variances of the linear regression coefficients β̂γ. The results in

White (1980) and Alberto Abadie and Zheng (2014) imply that, under some regularity
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conditions,

β̂γ − βpop
γ

d−→ 1√
n
N (0,Vpop

γ ), (14)

where the asymptotic variance is

Vpop
γ =

(
E
[
(X⊤AX)

])−1 (E [
X⊤Aεε⊤A⊤X

]) (
E
[
X⊤AX]

])−1
(15)

and ε = Γ̂−Xβpop
γ = (Γ̂−τ(X))+(τ(X)−Xβpop

γ ). The asymptotic variance can be used

to construct confidence intervals on the coefficients and run hypothesis tests. In general,

the first part Γ̂ − τ(X) of ε has heteroscedastic variance and so Equation (15) can only

be evaluated numerically.

With a sufficiently large sample size, we can use Equation (13) and Equation (15) to

calculate the expected mean squared errors on the two groups:

E

 1

|DA|
∑

Xi|X1
i =1

(τ̂(Xi)− τ(Xi))
2

 ≈ (
1− p

pγ + 1− p

)2

+VA,

E

 1

|DB|
∑

Xi|X1
i =0

(τ̂(Xi)− τ(Xi))
2

 ≈ (
pγ

pγ + 1− p

)2

+VB, (16)

where VA,VB are errors caused by the variances of the coefficients. These two values

depend on the number of observations n in the training data, the level of imbalance p,

the weight γ on the minority units, and the residuals of the constructed scores. On the

other hand, the first part of the expected MSE is attributed to the misspecification of our

linear model. We refer to the two terms ( 1−p
pγ+1−p

)2, ( pγ
pγ+1−p

)2 as misspecification errors.

When the number of units in the data set n grows, the second components VA,VB

converges to 0. As such, studying the errors attributed to misspecification is more in-

teresting. The theoretical ratio of the misspecification errors on the minority group to

the majority group is r(p, γ) =

(
1− p

pγ

)2

. When the linear regression is not weighted

with γ = 1, a small p value, which induces a large imbalance in the data set, creates a

large discrepancy between the expected MSEs on the minority and majority groups. For

instance, when p = 0.1, the misspecification error on the minority group can be 81 times
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the misspecification error on the majority group. In addition, Equation (16) provides

the optimal weight γ for equalizing the misspecification errors on the two groups. The

optimal γ would be
1− p

p
, which is the ratio of the majority group size to the minority

group size in the data set.

These theoretical results provide intuitions about the linear parametric model with

scores constructed using the AIPW estimator. In general, we confirm that when a linear

model is misspecified, the estimated CATE function admits significantly higher mean

squared errors in the minority group than in the majority group. This performance gap

is exaggerated when p decreases and the covariate X1 is more imbalanced. A weighted

linear regression is a valid tool for balancing the CATE estimation performance across the

two groups. However, while increasing the weight γ on the minority group decreases the

expected MSE on the minority group, it necessitates an increase in the expected MSE on

the majority group. Thus, reweighting methods with simple linear models create a trade-

off curve between the MSEs on the two groups, visualized in Figure 1. Equation (16)

allows decision-makers to deliberate further where the optimal point is on the trade-off

curve. For instance, if we want to ensure complete equality, the weight γ = 1−p
p
, which

balances the misspecification errors on both groups, is a good choice.

When researchers use simple linear models on a real-world data set, the model can

be arbitrarily misspecified. When the CATE function may differ across the minority and

majority groups, these models can be biased towards the majority group in the sense of

a lower MSE. Adding more weight to the minority units can mitigate this problem, but

some trade-offs between the two groups are likely to occur. So far, we have made progress

towards the first two research questions, but the third question has yet to be explored.

3.2 Correspondence with Simulation Results

To confirm the theoretical results, we can simulate a data set using the data generating

process outlined in Section 2. For different values of p and γ, we generate 4000 data points

for the training set and 1000 data points for the testing set. We use Equation (5) to

obtain the scores, where the nuisance parameters are cross-fitted using regression forests
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(Breiman 2001). Then, the constructed scores are regressed against the covariates using

weighted linear regression. Each specification of p and γ are simulated 50 times, and the

results are averaged.

We also check that the residuals of the constructed scores have high heteroscedasticity.

The residuals obtain a p-value of less than 10−49 in the Breusch–Pagan (Breusch and

Pagan 1979) test for heteroscedasticity. Similarly, as the probability of the protected

covariate p varies, the variance of Γ̂ − τ(X) in each subgroup varies significantly, with

higher variance for the minority group. In addition, the variance of this component

seems to be much larger than the second component. For a more detailed analysis of this

heteroscedastic variance, see Appendix B.2. As such, even though we understand the

second part τ(X)−Xβpop
γ of ε, it remains impossible to fully calculate εε⊤ analytically.

Thus, to determine the theoretical MSE values, we need to calculate the terms VA,VB

using Equation (15) numerically. The formulas for VA,VB are included in Appendix B.3.

We can, therefore, plot the empirical simulation results and overlay the theoretical

curves to make comparisons, as shown in Figure 1.

Figure 1: The left graph plots the ratio in MSE (MSE on minority / MSE on majority)
against the level of imbalance p. The middle graph plots the ratio of MSE on the minority
group to the MSE on the majority group against weights γ for p = 0.1. The right graph
plots the MSE on the majority group against the MSE on the minority group as the
weight on the minority group varies. For all three graphs, the dotted red line represents
the theoretical curve derived from Equation (16) with numerically calculated Huber-
White variance. The other points come from simulations.

The simulation results are identical to the theoretical curves. This again confirms

that as the probability of the protected variable X1 = 1 increases from small values up

to 0.5 (complete balance), the discrepancy between the majority and minority groups

diminishes. As the weight on the minority group increases, the MSE on minority units
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decreases while the MSE on majority units increases. In fact, the CATE estimation

performance is equalized right around γ = 9, which confirms our theoretical intuition

that γ = 1−p
p

= 9 balances the misspecification errors. Most importantly, the right graph

illustrates the trade-off curve between the MSEs of the two groups, enabling policymakers

to make informed decisions within specific settings by choosing an optimal point.

4 Non-parametric Methods

In this section, we turn to the third research question and explore whether it is

possible to increase CATE estimation accuracy on the minority group without harming

the majority group significantly. To this end, we propose two non-parametric methods

– reweighting with causal forests and synthetic data augmentation. We evaluate each

method’s performance using simulation studies. The simulations are set up according to

Section 2, where we generate 4000 data points for the training set and 1000 data points

for the testing set. Again, every specification is repeated 50 times, and the results are

averaged.

4.1 Reweighting with Causal Forests

Similar to reweighting in linear models, we can apply the same analysis to causal

forests (Athey et al. 2019). Causal forest extends the random forest (Breiman 2001) algo-

rithm and recursively partitions the covariate space to maximize treatment heterogeneity.

First, denote e(x) = P[Wi|Xi = x] for the propensity score and m(x) = E[Y/i|Xi = x]

for the expected outcome. Essentially, the causal forest tries to learn the heterogeneous

treatment effects through the R-Learner (Athey and Wager 2019):

τ̂(·) = argminτ

{
n∑

i=1

((
Yi − m̂(−i) (Xi)

)
− τ (Xi)

(
Wi − ê(−i) (Xi)

))2
+ Λn(τ(·))

}
, (17)

where the propensity scores ê(·) and marginal outcomes m̂(·) are cross-fitted with separate

regression forests, and Λn(τ(·)) is a regularizer for the complexity of learned τ̂ . In a

randomized controlled experiment, ê(·) can be replaced with the treatment probability
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π. The (−i) superscript denotes out-of-bag predictions, where for example Yi is not used

to train m̂(−i) (Xi).

Given a subsample S of the data, a causal tree aims to split the sample into L and

R leaves based on some covariate. It assumes homogeneous treatment effects in the two

children and computes τ̂L and τ̂R through residual-on-residual regression:

τ̂L ← lm
((
Yi − m̂(−i) (Xi)

)
∼

(
Wi − ê(−i) (Xi)

)
: Xi ∈ L

)
, (18)

and likewise for τ̂R.

The algorithm greedily finds a split that maximizes the weighted difference nLnR(τ̂L−

τ̂R)
2. Intuitively, this procedure allows causal trees to find leaves where the treatment

effect is constant but different from others. This is because when the treatment effect is

roughly constant over some neighborhood N(X), we can solve a partially linear model

over the neighborhood using Equation (18). After growing the trees and aggregating

them into a forest, given a new test point x, the weights induced by the causal forest are

ωi(x) =
1

B

B∑
b=1

1 ({Xi ∈ Lb(x), i ∈ Sb})
|{i : Xi ∈ Lb(x), i ∈ Sb}|

, (19)

where B is the number of trees, Lb(x) is the leaf that the new test point x falls in tree b,

and Sb is the subsample used to construct tree b. Intuitively, these weights measure the

similarity between the new test and training data points.

Then, causal forest acts as an adaptive kernel method and calculates the final τ̂ as:

τ̂ =

∑n
i=1 ωi(x)

(
Yi − m̂(−i) (Xi)

) (
Wi − ê(−i) (Xi)

)∑n
i=1 ωi(x) (Wi − ê(−i) (Xi))

2 . (20)

In addition, a causal forest uses an honesty condition to avoid over-fitting and con-

founding effects. Half of the sample would be used to build the trees, and the other half

of the sample would be used for inference. In this paper, we use the EconML package to

run causal forests for simulation studies and grf for application to a real data set.

Then, we can present graphs similar to Figure 1. We first plot the CATE estimation



Linan (Frank) Zhao June 7, 2024 19

performance disparity against p in Figure 2, which controls the amount of minority data

points compared to the majority group.

Figure 2: Performance disparity against different levels of imbalance using the causal
forest model. The left graph plots the difference in MSE (MSE on minority - MSE on
majority) against p, and the right graph plots the ratio in MSE (MSE on minority / MSE
on majority) against p.

Similar to our results before, as the number of minority data points increases, the

performance gap between the two groups first closes and then widens after the equilibrium

point of balance. Interestingly, in the causal forest case, the point of balance seems to be

around p = 0.3, where there are slightly more majority data points than minority ones.

This could be because the estimation is slightly more difficult locally for the majority

group as their CATE function involves the additional term X5.

Next, we apply weights γ to the minority data points when running the causal forest

algorithm, as shown in Figure 3. When sample weights are added to the algorithm,

the objective in Equation (17) becomes a weighted sum, and Equation (18) becomes a

weighted linear regression. During inference, Equation (20) adds the additional sample

weights α(x) to the weighted regression, i.e. ωi(x) becomes α(x)ωi(x). Intuitively, this

prioritizes fit on the units that are weighted more.

Similar to the linear model result, as weight increases, MSE on the minority group

decreases, and MSE on the majority group increases slightly. However, contrary to the

linear model, the increasing MSE on the majority group is much less prevalent. In fact, the

MSE on the majority group never becomes larger than the MSE on the minority group.
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Figure 3: Performance disparity against different minority group weights γ using the
causal forest approach. The left graph plots the ratio in MSE (MSE on minority / MSE
on majority) against different weights γ. The right graph plots the MSE on the majority
group against the MSE on the minority group for different weights γ. Both plots depict
performances on the test set.

Intuitively, this could be because when the weights on the minority data points become

sufficiently large, the causal trees always split on the covariate X1. After this split, the

CATE function is locally linear for both groups; hence, the estimation would be relatively

straightforward. Nonetheless, the fact that increasing minority weights γ creates large

positive improvements for the minority group at the cost of minute loss for the majority

group is desirable. This might indicate that a close-to-Pareto improvement is possible for

the whole population. However, we should still be careful about the exact value of γ to

use. It seems that when γ ≥ 10, the MSE on the minority group stops improving, and

it only worsens the performance on the majority group. But for a weight γ < 10 in this

case, reweighting with causal forest achieves the goal of balancing performance among

the two groups while not hurting the majority group significantly.

4.2 Data Augmentation with Generative Models

In classification tasks, synthetic data augmentation methods like SMOTE (Chawla et

al. 2002) have been popularly used in class imbalance settings. Similarly, we can envision

an approach that generates synthetic data to augment the minority group in the covariate

imbalance setting. The advantage could be that re-weighting methods are discrete, but
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adding synthetic data brings additional information and leads to smoother improvements.

There has not been much work done directly on augmenting the data set with syn-

thetic data points in CATE estimations. However, Athey et al. (2021) proposes a viable

way to generate synthetic data for causal inference tasks. The authors propose Wasser-

stein Generative Adversarial Networks (WGAN) to systematically generate artificial data

that closely mimics existing data sets to improve the credibility of Monte Carlo studies.

Although the paper utilizes synthetic data for model comparisons, we can leverage the

generated data for augmentation purposes. Indeed, it remains unexplored how adding

synthetic data units will influence CATE estimation performance.

The generative adversarial framework was first introduced in Goodfellow et al. (2014).

It is a two-player, non-cooperative game between a generator g and a discriminator d.

The generator is often parameterized as a neural network with parameters θg. It takes

some Gaussian noise Z ∼ N(0, I) as input and tries to generate data points similar to the

input data distribution from X1, · · · , XN . The discriminator is also often parameterized

as a neural network with parameters θd. The discriminator’s goal is to discern whether

a data point is “real” or “fake,” meaning discerning whether the data is from the input

data set or the generator. It outputs the probability of any data point being “real.” The

classic GAN training min-max objective is:

min
θg

max
θd

L (θd, θg) , (21)

where the objective function is

L (θd, θg) =
1

NR

NR∑
i=1

ln d (Xi; θd) +
1

NF

NF∑
i=1

ln [1− d (g (Zi; θg) ; θd)] . (22)

Here, d(·) represents the output of the discriminator, g(·) represents the generator’s

output, and NR, NF are the number of real and fake units, respectively.

Then, we can use gradient descent methods to update the generator and discriminator

iteratively. When the training converges, the generated sample distribution should be

near-identical to the training data distribution, and the discriminator will not be able to
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discern them apart.

However, GAN training is notoriously hard and unstable. Difficulties can arise when

the discriminator becomes too proficient early on in detecting generated observations

and fails to provide useful gradient information for the generator to improve. To remedy

that, Arjovsky et al. (2017) proposes an alternative using the Earth-Mover or Wasserstein

distance. The optimization problem of the WGAN becomes

min
θg

max
θc

{
1

NR

NR∑
i=1

f (Xi; θc)−
1

NF

NF∑
i=1

f (g (Zi; θg) ; θc)

}
, (23)

where the function f is a critic parameterized by θc, and its optimized value implies an

upper bound on how much any Lipschitz-continuous moment can differ between the real

and fake distributions. For WGAN to work, we require the critic to be 1-Lipschitz. To

enforce that, it is common to add a penalty term in the following form

λ

{
1

m

m∑
i=1

[
max

(
0,
∥∥∥∇x̂f

(
X̂i; θc

)∥∥∥
2
− 1

)]2}
. (24)

Further, WGAN can be conditioned on some input V by simply concatenating V

to the input noise. For the exact WGAN algorithm, please refer to page 11 in Athey

et al. (2021). The first step is to generate X conditional on W , where W contains the

same fraction of treated units as in the input data. The second step is to train another

generator that generates Y (W ) given the treatment indicator W and the covariates X.

This results in two generators with parameters θg,X|W and θg,Y (W )|X,W . Modeling the data

generation process in this way also allows us to have access to both potential outcomes

Y (0) and Y (1).

After training the generators, we can synthesize realistic data points that are similar

to the original data set. Although Athey et al. (2021) does not explore whether the

synthetic data could be used as augmentation, it serves as promising evidence that we

can, in principle, create realistic synthetic data sets. Thus, exploring what happens when

we use synthetic data augmentation to address covariate imbalance would be intriguing.

To explore the idea of synthetic data augmentation, we again use the simulation setup
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in Section 2. In particular, after we simulate a training data set of 4000 units, we use

the approach outlined above to train a generator (regarding {θg,X|W , θg,Y (W )|X,W} as a

single entity) through adversarial loss. Importantly, to aid the generator in learning

the minority group distribution, we over-sample the minority group to balance with the

majority group before training the generator. The graphs in Figure 4 show the generation

results.

Figure 4: The top-left graph shows the correlation plot among covariates in both the real
and fake data sets. The bottom-left plot shows the scatter plot of selected covariates with
the outcome variable, where the fake data is overlaid on top of the real data. The plot
on the right shows the histogram of selected covariates. The red bars and points indicate
fake samples, whereas the blue bars and points indicate real samples.

The generated fake data stays reasonably truthful to the real data distribution. The

generator is able to learn the normal and categorical distributions effectively. However,

the average of the generated outcome variable Y for the categorical covariates seems to

be systematically higher. Yet this shortcoming of the generator does not seem to impede

its ability in downstream applications when we use the generated data for augmentation.

Since the second generator θg,Y (W )|X,W is able to generate both potential outcomes, the

generated data comes with an estimation of individual treatment effects. This generated

treatment effect and the ground-truth treatment effect share a correlation coefficient of

0.594, which is decent. We still should not use the generator to directly predict individual

units’ treatment effects. This is because the mean squared error of the generated and

ground-truth treatment effects is 1.753, significantly worse than the causal forest or linear
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model’s performance.

Nonetheless, we can take the generated data for which X1 = 1 and augment them

to the training data. This would strictly increase the total number of data points for

the minority class without affecting the majority class. As more synthetic data is added,

we can again plot the performance disparity among the two groups against the amount

of data added. Note that this synthetic data augmentation method can be plugged into

any CATE estimation method, but we choose to use the causal forest approach. The

simulation result is shown in Figure 5. Paradoxically, although the generated treatment

effects have higher mean squared errors than causal forests, the synthetic data can still

provide useful signals to the causal forest model that improve the performance on the

minority group.

Figure 5: Performance disparity against different amounts of synthetic data augmented
using the causal forest approach. The left graph plots the ratio in MSE (MSE on minority
/ MSE on majority) against the different amounts of synthetic data added. The right
graph plots the MSE on the majority group against the MSE on the minority group
against the different amounts of synthetic data added. Both plots are performance on
the test set.

As more data is added to the minority group, the estimation performance on the

minority group first decreases and then increases while the estimation performance on the

majority group stays mostly constant. When the minority group size is augmented to be

around 0.4 times the majority group size, the estimation accuracy between the two groups

is balanced. This demonstrates that the right amount of synthetic data augmentation

can effectively balance CATE estimation performance without hurting the performance
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on the majority group. However, adding too much synthetic data may create too much

noise and begin to hurt the performance on both groups. Comparing the specific MSE

values to the result on the weighted linear model and weighted causal forest model, this

approach achieves the lowest MSE on the minority group while maintaining a relatively

low MSE value on the majority group.

We can also look at the impact of synthetic data augmentation more closely. In

Figure 6, when synthetic data is added until the minority group size equals 0.4 times

the majority group size, the MSE on both groups decreases. In particular, the decrease

for the minority group is large, and the decrease for the majority group is more minute.

This shows that when the correct amount of synthetic data is added to the minority

units, both groups can benefit from Pareto improvements. In addition, even when too

much synthetic data is added, the increasing MSEs for both groups are relatively small

compared to the initial gain. This shows that synthetic data augmentation methods are

reasonably robust regarding the amount of data added.

Figure 6: The left graph plots the MSE on the minority group against the amount of
synthetic data augmented. The right graph plots the MSE on the majority group against
the amount of synthetic data augmented. Both plots are for the test set. In each plot,
two lines of best fit are presented for data points before and after the group sizes ratio
reaches 0.4.

Overall, the simulation results show that reweighting with causal forest and synthetic
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data augmentation through WGAN are two effective methods to address the third re-

search question. Non-parametric machine-learning approaches can indeed enable us to

increase performance on the minority group with little or no deterioration on the majority

group. The current results for the specific setup in Section 2 imply that the synthetic data

generation pipeline has a slight edge. It allows for the possibility of a Pareto improvement

and achieves a better overall performance.

5 Application to a Real-World Data Set

As mentioned in Section 1, the broad motivation for fair CATE estimation comes

from its application in program evaluation and policy intervention decisions. Thus, we

demonstrate the effectiveness of the proposed methods by applying them to a real-world

data set. These methods can be applied to arbitrary situations where there is some

evidence for treatment heterogeneity and where a variable of interest is imbalanced.

5.1 JTPA Job Training RCT

We choose to use the data from a randomized controlled trial from the National

Job Training Partnership Act (JTPA) Study. In 1986, the US Department of Labor

commissioned the study to evaluate the benefits and costs of specific employment and

training programs for economically disadvantaged adults and out-of-school youths (Bloom

et al. 1997). The experiment was conducted for about 20,000 individuals across 16 local

JTPA programs. One-third of the participants were randomly assigned to the control

group, where they were not allowed to enroll in JTPA programs for 18 months. The

other two-thirds were allowed to enroll. Subsequent data like earnings and days until

re-employment were collected through unemployment insurance agencies and follow-up

surveys.

Since JTPA aims to enhance the skill sets of disadvantaged workers by providing job

training and assistance with job searches (Devine and Heckman 1996), its role in the

US Labor Market is paramount. As such, it is vitally important to identify people who
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may benefit the most from such training programs and why they may be ineffective for

others. Thus, CATE estimations are beneficial in this setting as they can inform the

public employment services about which individuals to prioritize for scarce job training

opportunities. Previous studies like (Bloom et al. 1997) and (Sverdrup and Wager 2024)

have mostly concluded that JTPA programs are, on average, useful. They have also

identified evidence for treatment heterogeneity, where specific subgroups seem to benefit

more than others. For example, treatment group members gained modestly more earnings

throughout the follow-up period compared to their control group counterparts if they were

adults, but the positive effect is almost negligible for youths (Bloom et al. 1997). On the

other hand, being assigned to the treatment group positively decreased the amount of

time it took for study participants to find a job, and the treatment effect shows clear

signs of heterogeneity (Sverdrup and Wager 2024).

For our analysis, we mostly follow Bloom et al. (1997) and consider a subset of the

data processed from the raw source, which is included in the link in Appendix A. The

outcome variable is the total 30-month earnings during the follow-up period. We include

six relevant covariates to estimate the effect of eligibility for JTPA programs on income.

These covariates include age, gender, race (White, Black, Hispanic, Native, Asian), high

school degree, marital status, and dependent information. Out of these covariates, we

found that age is heavily imbalanced, with half of the participants being below 27 years

old and only 14.3% at least 40 years old. Detailed descriptive statistics of the age covariate

are included in Appendix C.1. Therefore, we pick individuals who are at least 40 years old

to be the minority group and everyone who is less than 40 years old to be the majority

group. This creates an imbalanced variable, for which the probability of being in the

minority group is roughly p = 14.3%.

There are many reasons why policymakers may pay special attention to this vulnerable

group of older people. For instance, it is significantly more difficult for older unemployed

workers to find new jobs and reintegrate into the labor market (Axelrad et al. 2018).

Unemployed older job seekers are more likely to be long-term unemployed and face sharper

wage declines (Van Horn et al. 2011), and there are biased stereotypes about older workers
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(Axelrad et al. 2013). When CATE-based prioritization rules make more mistakes on the

older population (the minority group), it adversely impacts older job seekers and worsens

their situation. Therefore, identifying methods that can prevent inferior results for this

minority group is paramount.

5.2 RATE

To quantitatively evaluate treatment prioritization rules, we introduce the metric

termed Rank-Weighted Average Treatment Effects (RATE) (Yadlowsky et al. 2023). The

RATE metrics evaluate the extent to which individuals who are highly ranked by the

prioritization rule are more responsive to treatment than random individuals. In fact, in

real data sets, researchers do not have access to the ground-truth data-generating process

or the CATE function. We would not be able to calculate the exact MSEs on the two

subgroups to compare estimation performance. The RATE metric can serve as a proxy

that reflects the accuracy of CATE estimations. The RATE metric is more suitable for

our setting because it directly evaluates the quality of CATE-induced prioritization rules.

Following Yadlowsky et al. (2023), a prioritization rule is defined using a priority

scoring function S : X → R, where the units are prioritized for treatment in decreasing

order of S(Xi). Further denote FS(·) to be the cumulative distribution function of S(Xi).

In our setting, this priority scoring function is τ(Xi), where individuals with the highest

treatment effects are prioritized. RATE metrics are calculated from targeting operator

characteristic (TOC). For any prioritization rule with priority score S(·) and any threshold

u ∈ (0, 1] where F−1
S (u) exists, the TOC is defined as:

TOC(u;S) = E [Yi(1)− Yi(0) | FS(S(Xi)) ≥ 1− u]− E [Yi(1)− Yi(0)] . (25)

Essentially, TOC measures the better-than-average effects of the prioritization rule

when treatment is assigned to the top u% individuals. The next section shows an example

of the TOC curve in Figure 7. If the prioritization rule is effective, the top few percentiles

should observe much higher treatment effects than average, given treatment heterogeneity.
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The RATE metric of a priority score S(·), which is induced by the CATE estimations in

this case, is defined as:

θα(S) =

∫ 1

0

α(u)TOC(u;S)du, (26)

where α : (0, 1] → R is any weighting function. When α(u) is uniformly 1, the RATE

metric is called AUTOC, and when α(u) = u, the RATE metric is called Qini.

Empirically, when we do not have access to oracle scores E[Yi(1) − Yi(0)|Xi], we

construct scores Γ̂ that approximately satisfy Equation (4). One choice is the AIPW

estimator in Equation (6) with cross-fitting discussed before. Yadlowsky et al. (2023)

shows that the RATE metric can be empirically estimated using

η̂wα(S) =
1

n

n∑
j=1

wα(
j

n
)Γ̂i(j), (27)

where wα(t) =
∫ 1

t
α(u)
u

du−
∫ 1

0
α(u)du and Γ̂i(j) is the jth-ranked estimated score.

5.3 Results on a Semi-Synthetic JTPA Data Set

The real JTPA data set is somewhat noisy and admits to having a relatively small

treatment effect. Score estimation tends to create large approximation errors. As such,

we first present results on a semi-synthetic data set that adheres to the distribution of

the original JTPA data.

After filtering out missing entries, the JTPA study contains 13198 rows. Inspired

by the works of Athey et al. (2021), we feed the entire data set into the Wasserstein

Generative Adversarial Networks pipeline outlined in Section 4.2 and train two generators.

Then, we can regard the trained generators as the underlying data-generating process.

Similar to the result in the simulation studies, the generated data closely resembles the

real JTPA dataset, with visualizations shown in Appendix C.2.

We use WGAN to generate large samples (50, 000) for the training and testing sets.

We can fit causal forests on the training set and evaluate its CATE-induced prioritiza-

tion rule on the test set through RATE metrics. First, we show the targeting operator

characteristic curve on this semi-synthetic data set as a starting point.
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Figure 7: The targeting operator characteristic against different treated fractions. This
shows the better-than-average effect when allocating treatment to the top q% of the
population.

On the semi-synthetic data set, the proportion of units at least 40 years old is p =

10.0%. The average treatment effect is 824.9 dollars with a standard error of 132.0. The

95% confidence interval for the area under the TOC curve (AUTOC) is 312.7 ± 296.1,

which does not include 0. These estimates show that the synthetic data has a positive

average treatment effect and has treatment heterogeneity. In addition, the TOC curve

shows that only a small subset of individuals have a significantly non-zero heterogeneous

treatment effect. Following the advice of Yadlowsky et al. (2023), we choose to use

AUTOC as the RATE metric. The benefit of the semi-synthetic data set is that we can

use oracle scores Yi(1)− Yi(0) in RATE metric calculation.

For applications, we focus our analysis on non-parametric methods and omit the linear

model. Generally, there is no reason to assume linearity and non-parametric models

perform better for complex real-world data sets. Below, we present results on the causal

forest reweighting and synthetic data augmentation methods in Figure 8.

As the weight on the minority group increases, the AUTOC metric on the minority
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Figure 8: The left graph shows the AUTOC metric on the majority group against the
AUTOC metric on the minority group for different weights γ on the minority units. The
right graph shows the AUTOC comparisons between the two groups as more synthetic
data are added to the minority group. Both methods use the causal forest model, and
evaluations are done using the semi-synthetic JTPA test set.

Reweighting with Causal Forest Synthetic Data Augmentation

group first increases and then decreases. The metric on the majority group stays relatively

constant. This shows that increasing the weight can benefit the minority group slightly

without affecting the majority group. On the other hand, when we re-train WGAN

on the semi-synthetic training set and add more synthetic data to the minority group,

the AUTOC metric is monotonically improving. In addition, the impact of synthetic

data augmented to the minority group has small effects on the majority group. Judging

from the immense improvement on the minority group, synthetic data augmentation via

WGAN appears to be a superior method.

We first zoom in to the AUTOC plot against minority group weights and study the

effects of reweighting more carefully in Figure 9. When the weight is below 4.5, the AU-

TOC metric on the minority group significantly increases. However, it slowly deteriorates

past that point. On the other hand, as more weight is put on the minority group, the

AUTOC metric slowly decreases in the majority group, but the decline is almost negli-

gible. This illustrates that a small weight on the minority group can significantly boost

the RATE metric on the minority group without hurting the majority group materially.
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Still, researchers should be cautious not to add too much weight, as the benefits reverse

beyond a specific point.

Figure 9: These two plots show the AUTOC metric on the minority and majority groups
as more weight is added to the minority units in the causal forest model. For the left
graph (minority group), two lines of best fit are shown before and after a chosen turning
point. One line of best fit is shown for the right graph (majority group).

Next, we zoom in to the AUTOC plot for synthetic data augmentation in Figure 10. As

more synthetic data is added to the minority group, the AUTOC metric monotonically

increases from a negative value to almost 200. The AUTOC metric for the majority

group slowly declines, but the rate of decline is dwarfed by the rate of improvement for

the minority group. As the minority and majority group sizes equalize, the performance

measured by AUTOC This incredible gain from synthetic augmentation is perhaps less

surprising because the training data is also generated from a WGAN. Thus, it might

be easier for WGAN to re-learn the data distribution from the semi-synthetic training

samples.

Both of the proposed methods can significantly improve the AUTOC RATE metric

on the minority group without notably hurting the majority group. This is beneficial

for older people because they can receive higher better-than-average effects through the

better CATE-induced prioritization rules. In particular, one should be more careful with

the weight being put on minority units, as higher weights can potentially start to worsen
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Figure 10: These two plots show the AUTOC metric on the minority and majority groups
as more synthetic data is augmented to the minority group in the semi-synthetic JTPA
data. In each graph, a line of best fit is shown.

the performance on the minority group.

Overall, we have demonstrated the effectiveness of both methods on a semi-synthetic

data set grounded in realism. This again contributes to answering the third research

question, where it is possible to balance performance between the two groups without

significantly worsening the performance on the majority group. Crucially, the weight

added to the minority group and the amount of synthetic data added to the minority

units can be seen as hyper-parameters. Researchers can visualize performance as these

hyperparameters vary to determine a sensible range and make policy decisions based on

the trade-off.

5.4 Real JTPA Data

We repeat the same procedure and evaluate the two proposed methods on the real

JTPA data set. To estimate RATE metrics on the real data, we must construct scores for

the test set according to Equation (6) with cross-fitted nuisance parameters. Note that

the constructed scores are held constant irrespective of the methods used. These scores

can have large approximation errors compared to ground-truth values. Thus, we should
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interpret the results in this section with appropriate caution. Figure 11 demonstrates the

result on the real JTPA data set.

Figure 11: The left graph shows the AUTOC metric on the majority group against the
AUTOC metric on the minority group for different weights γ on the minority units. The
right graph shows the AUTOC comparisons between the two groups as more synthetic
data are added to the minority group. Both methods use the causal forest model, and
evaluations are done on the real JTPA test set.

Reweighting with Causal Forest Synthetic Data Augmentation

Surprisingly, the re-weighting method improves performance in both groups, with

large improvements for both the minority and majority groups. The AUTOC metric

increases from large negative numbers to 0 for the minority group and increases from

around 100 to around 400 for the majority group. As more weight is added, the per-

formance on the two groups seems to stabilize. This finding is unintuitive, and more

robust tests may be required. One explanation could be that the signal-to-noise ratio in

the minority group is somehow higher, and learning in the minority group has positive

spillover effects on the majority group. On the other hand, synthetic data augmentation

keeps the majority group’s AUTOC mostly constant while significantly improving the

AUTOC on the minority group. Zooming in on the result of this method in Figure 12,

the improvement on the minority group is substantial, and the decline of AUTOC on the

majority group is slight (the linear regression coefficient is not significantly different from

0). In fact, synthetic data augmentation can boost the negative RATE on the minority
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group to a reasonably large positive number.

Figure 12: These two plots show the AUTOC metric on the minority and majority groups
as more synthetic data is augmented to the minority group in the real JTPA data. In
each graph, a line of best fit is shown.

The result on the real JTPA data set again confirms the effectiveness of the two

proposed methods. This demonstrates that researchers who are concerned about an

imbalanced covariate should attempt to correct the potentially biased performance on

the minority group through these methods.

6 Additional Results and Discussions

For the majority of simulation studies conducted so far in this paper, we rely on the

motivating example in Section 2. In this section, we explore other simulation settings

and test the limits of the two proposed methods. Since the key focus is on the behavior

of the weighted causal forest and synthetic data augmentation methods, we delay other

secondary results to the appendix.

6.1 Signal to Noise Ratio

A natural objection to the proposed methods is that we can fit two separate models

on the two subgroups, and this might achieve better results than trying to balance one
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model on both groups. In fact, this can be true when the sample size is large or when

the signal-to-noise ratio is high. In those scenarios, learning from the minority group

itself may be sufficient. However, in cases where the signal-to-noise ratio is low, which is

common in most real-world data sets, this approach of fitting two separate models may

not work well.

We test this hypothesis using the simulation setup in Section 2 but we modify Equa-

tion (3) to be:

Y (X,W ) = max(
6∑

i=1

X i, 0) +W · τ(X) +N (0, σ2), (28)

where σ2 controls the noise level in the generated data set. Following Lu and Liu

(2022), the signal-to-noise ratio (SNR) is defined as the ratio of the finite-population

variance of max(
∑6

i=1X
i, 0) + W · τ(X) to that of N (0, σ2). Empirically, the variance

of max(
∑6

i=1X
i, 0) +W · τ(X) is around 4.95 and is similar between the minority and

majority groups. Thus, we use σ2 = 1.0, 5.0, 25.0 to simulate signal-to-noise ratios that

are roughly 5.0, 1.0, and 0.2.

For the linear model, as SNR decreases, the performance of fitting two separate models

quickly deteriorates and becomes much worse than fitting one combined model (even

without reweighting). This result is shown in Appendix D.1. Below, we show the results

of causal forest with reweighting for varying signal-to-noise ratios in Figure 13.

For large signal-to-noise ratios, the separately-fitted models’ performance is strictly

better than any point on the trade-off curve of the jointly trained model. However, as the

SNR decreases, the performance of the separately-fitted model moves closer to the trade-

off curve. In the case of a 0.2 signal-to-noise ratio, the right weight on the minority group

with a single model yields a lower MSE on the minority group than the separately-fitted

models while maintaining similar performance on the majority group. The separately-

fitted models are still performing reasonably well, which may be due to the robustness of

the causal forest. However, when the training sample size is reduced from 4000 to 1000

with 0.2 SNR, the separately-fitted models produce worse results than a single forest
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(shown in Appendix D.1).

Figure 13: The three graphs show the performance on the majority and minority groups
using the causal forest model with different minority weights under different SNRs. The
red dots plot the MSEs obtained from training two separate causal forest models on the
two groups.

In addition, Figure 13 shows that when the signal-to-noise ratio is low, we need to be

more careful with the optimal weight being added to the minority group. A higher-than-

necessary weight can cause performance to deteriorate for both groups.

Next, we present the result using synthetic data augmentation when SNR = 0.2 in

Figure 14. The generation quality of WGAN is discussed in Appendix D.1. As more

synthetic data is added to the minority group, we observe a similar pattern of the MSE

dropping initially on the minority group and then increasing. The MSE on the majority

group also increases slightly, but at a much slower rate. This illustrates that synthetic

data augmentation can still be effective when the signal-to-noise ratio is low, as it almost

balances performance. Importantly, this method can achieve performance that is strictly

better than fitting two separate models on the two groups.

Comparing this result to the causal forest with reweighting, the lowest MSE achieved

on the minority group is much lower. The synthetic data augmentation approach might

also be more desirable in the sense that even when an inappropriately large amount of

synthetic data is added, the performance on the majority group would not be affected too

much. Overall, we have shown that separately training two models on the two subgroups

is an inferior approach when the signal-to-noise ratio is low, or the sample size is small,

which are likely conditions for real-world data sets. When the signal-to-noise ratio is low,

we need to pay more attention to the exact weight on the minority group or the amount of



Linan (Frank) Zhao June 7, 2024 38

Figure 14: Performance disparity between the two groups against the amount of synthetic
data added when the signal-to-noise ratio is 0.2. The red dot plots the MSEs obtained
from training two separate causal forests.

synthetic data added, as higher-than-necessary values lead to deteriorating performance

for both groups.

In addition, training two separate models can cause issues downstream when CATE

estimations are used for prioritization rules. This is because we cannot easily aggregate

the outputs of two models to design priorities for the whole population. For instance,

imagine that one of the models is slightly biased to produce higher treatment effects.

This would mislead the decision maker to allocate more resources to that group than

optimal.

6.2 Extremely Imbalanced Covariates

The examples in the rest of the paper mostly focus on a level of imbalance p = 0.1,

where the probability of being a minority unit is around 10%. This section considers a

more extremely imbalanced case with p = 0.01. In the simulation setup where 4000 data

points are generated for the training set, only around 40 units would be in the minority

group. This presents an extreme case where the amount of information available on the

minority group is exceptionally scarce. Using the same setup as Section 2 with p = 0.01,

we test the robustness of our methods in this setting.

Figure 15 presents the performance of the two proposed methods in this setting.
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When small weights are added to the minority group, the MSE on the minority group

decreases slightly. However, as more weight is added, the MSE on the minority group

hovers between 1.5 and 2.0 and fails to improve below 1.5. In this case, although the

performance on the majority group is not affected significantly, the improvement on the

minority group is also small.

Figure 15: Results when data is extremely imbalanced (p = 0.01). The left graph shows
the MSE on the majority group against the MSE on the minority group for different
weights γ on the minority units. The right graph shows the MSE comparisons between
the two groups as more synthetic data are added to the minority group.

Reweighting with Causal Forest Synthetic Data Augmentation

On the other hand, when more synthetic samples are added to the minority group,

the performance on the minority group increases significantly while the performance on

the majority group stays mostly constant. As more synthetic minority units are added,

the minority group MSE drops to around 0.4 and stabilizes there. Surprisingly, even with

roughly 40 observations, the WGAN can still accurately learn the underlying distribu-

tion and contribute useful information through data augmentation. For visualizations of

the WGAN generation quality, please refer to Appendix D.2. In extreme cases where

reweighting methods do not work well, Figure 15 is testimony to the robustness of syn-

thetic data augmentation methods. Indeed, with the recent rapidly growing progress in

generative modeling, generating synthetic data for augmentation can become an increas-

ingly powerful tool.
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6.3 Independent CATE on the Two Groups

In the motivating example in Equation (2), the minority and majority groups share

some commonalities in their CATE function. This serves as intuition for the possibility

that focusing more on the minority group may not deteriorate the performance on the

majority group too much. Essentially, learning from the minority group can potentially

also facilitate learning about the majority group.

Then, what about a case where the CATE functions are completely different for the

two groups? Would it still be possible to improve on the minority group without harming

the majority group? To answer this question, we modify the CATE function below and

run the same simulation studies with p = 0.1.

τ(X) =


X2 +X4, X1 = 1

X3 +X5, X1 = 0

(29)

Unsurprisingly, the result of the weighted linear model using AIPW scores and the

performance disparity for different levels of imbalance is almost identical to the result in

Figure 1. This is because the CATE is still locally linear for the two groups. As such,

we omit these results. The results for the two non-parametric methods are shown in

Figure 16.

Comparing with Figure 3 and Figure 5, we do observe more trade-offs when the

CATE is independent across the two groups. This is more apparent in the reweighting

with causal forest case, where increasing minority weights monotonically increases MSE

on the majority group. In the synthetic data augmentation case, when the added data is

less than the number of majority units, the MSE decreases significantly for the minority

group without affecting the majority group. However, when too much synthetic data is

added, the performance on the majority units begins to deteriorate. Again, note that we

can obtain better results with the data augmentation method.

Although both methods reduce MSE on the minority group drastically, it is more

difficult to avoid a trade-off. In the context of research question 3, reweighting with



Linan (Frank) Zhao June 7, 2024 41

Figure 16: Results when the CATE is completely independent between the two groups.
The left graph shows the MSE on the majority group against the MSE on the minority
group for different weights γ on the minority units. The right graph shows the MSE
comparisons between the two groups as more synthetic data are added to the minority
group.

Reweighting with Causal Forest Synthetic Data Augmentation

causal forest no longer works well when the CATE between two groups is independent.

The synthetic data augmentation method still produces satisfactory results.

6.4 Complex Nonlinear CATE Function

So far, we have worked mostly with locally linear CATE functions, apart from the

application to the JTPA study. In this section, we explicitly consider a complicated

nonlinear CATE inspired from Künzel et al. (2019). The underlying data generation

process is still the same as Section 2 except the CATE function is defined using:

µ1(Xi) =


1
2
ζ(X2

i )ζ(X
4
i ), X1

i = 1

1
2
ζ(X2

i )ζ(X
5
i ), X1

i = 0

µ0(Xi) = −
1

2
ζ(X2

i )ζ(X
4
i ), (30)

where ζ(x) = 2
1+exp(−12(x− 1

2
))
, Yi(1) = µ1(Xi) + N (0, 1), and Yi(0) = µ0(Xi) + N (0, 1).

The CATE function is thus equal to µ1(Xi) − µ0(Xi), which is a complicated nonlinear

function.

As expected, linear regression with AIPW scores creates larger-than-necessary errors

in this case, as shown in Appendix D.4. Below, Figure 17 shows the result of the two pro-
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posed methods. Both methods are quite sensitive to the amount of weight or the amount

of synthetic data added. Small values improve the MSE on the minority group without

hurting the majority group’s performance. However, larger values begin to deteriorate

the performance on the minority group. Again, even when too much data is added, the

MSE on the majority group does not increase significantly. On the contrary, reweighting

with causal forests can significantly worsen the performance on the majority group.

Figure 17: Results when the CATE is a complicated nonlinear function. The left graph
shows the MSE on the majority group against the MSE on the minority group for different
weights γ on the minority units. The right graph shows the MSE comparisons between
the two groups as more synthetic data are added to the minority group.

Reweighting with Causal Forest Synthetic Data Augmentation

In complicated settings, both methods require researchers to pick the best hyperpa-

rameter – weight or amount of synthetic data augmented. With the correct choice, we

can usually improve minority group performance by a notable amount without hurting

the majority group.

7 Conclusion

In this paper, we tackle the under-explored problem of CATE estimation in the pres-

ence of an imbalanced covariate. When the CATE is heterogeneous across the minority

and majority groups, we posit that standard methods produce CATE estimations that

are substantially less accurate on the minority units. Since CATE induces prioritization

rules for policy assignment, this performance disparity can be inequitable for people in the
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minority group. Through theoretical derivations in a weighted linear regression model,

we gain deeper insights into the effect of misspecification on estimation performance

disparity. By adding more weight on the minority units, weighted least squares with

AIPW scores can improve performance on the minority group at the cost of deteriorating

accuracy on the majority group.

In an effort to improve upon this baseline, we turn to non-parametric methods like the

causal forest model. Inspired by previous literature, we adapt two popular approaches to

this setting – reweighting and synthetic data augmentation. Through extensive simulation

studies, we demonstrate the effectiveness and versatility of these two methods. Under all

the circumstances explored in this paper, setting the right weight and adding the right

amount of synthetic data on minority units always produce gains for the minority group

with zero or negligible effect on the majority group. In many situations, the improvement

for minority units is substantial.

However, in difficult situations where the signal-to-noise ratio is small, or the CATE

function is complicated, one needs to be more careful about the chosen weight or the

amount of synthetic data added. After specific thresholds, higher weight or more data

added can cause performance to deteriorate for both groups. To this end, synthetic data

augmentation seems to be more robust. Even when it may hurt minority group per-

formance beyond a specific point, it rarely significantly worsens the performance on the

majority group. In fact, in some edge cases like extreme imbalance and independent

CATE functions where the reweighting method struggles, synthetic data augmentation

via WGAN still performs favorably. Compared to reweighting with causal forest, syn-

thetic data augmentation almost always produces superior results in the sense that it can

obtain better performance on the minority group while maintaining comparable perfor-

mance on the majority group. As such, researchers may prefer the latter approach in

most contexts. The downsides to training a WGAN for generating synthetic data are the

loss of statistical properties, extra time, and computational resource requirements.

Finally, we apply these two methods to a real-world data set in the context of job

training programs and evaluate their performance through RATE metrics. We provide
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two realistic ways for assessing CATE estimation performance on real data – creating

a semi-synthetic data set or constructing scores. Our results show that both methods

can significantly improve the minority group performance without hurting the majority

group substantially. Crucially, our methods equip policymakers with a hyperparameter

(weight or amount of added data) that controls the potential “trade-off” between the two

groups. This empowers decision-makers to weigh fine-grained considerations based on

specific fairness and welfare constraints to determine the optimal point.

In conclusion, the proposed methods effectively tackle the issues of CATE estimation

with an imbalanced covariate, striking fairness and balance between the two groups.

7.1 Future Research

Even though this paper proposes two effective methods for handling imbalanced co-

variates, more remains to be researched. First of all, more real-data evaluations should be

conducted to test the robustness of both methods. In particular, we should study if the

same performance patterns are observed across a diverse range of data sets. To this end,

the proposed methods extend naturally to observational studies without confounding,

and we should test with observational settings. As an extension to this problem setup,

we may also consider the case where multiple covariates of interest are imbalanced.

So far, the proposed method’s weighting scheme is uniform, with the same weights

for minority units and the same weights for majority units. An improved version could

involve a more dynamic weighting scheme. For instance, rarer occurrences in the minority

group could be weighted even more than other units. In addition, we can even merge

both approaches and use weighting with synthetic data augmentation. For instance, we

may be motivated to downweight the synthetic samples.

With the rapid progress in generative models, we can experiment with other generation

methods like Neal et al. (2020) and Qian et al. (2023) to compare with the WGAN

implementation. Recently, diffusion models (Ho et al. 2020) have demonstrated incredible

generation capabilities, and it would be interesting to see how they perform. Lastly, we

can also investigate a subsample and ensemble approach. We can train causal trees on
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balanced (in terms of minority and majority groups) subsets of the training data and

aggregate them into a causal forest.

In summary, future research should be conducted to study the generality of the pro-

posed methods, and experiments should be conducted in other novel directions.
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Appendix

A Replication Code

To augment the usefulness of our findings and methodology, we have made all the repli-

cation code publicly accessible. github.com/Frankz24/CATE-Imbalanced-Covariate/

contains all codebooks for running the simulations, processing the data, training the

WGANs, and applying the proposed methods to a real data set.

B Supplementary Material for Theoretical Derivations

B.1 Intermediate Calculation Step

The matrix E[G] = E[ 1
n
X⊤AX] is



pγ pγ
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pγ
2

0 0 0 pγ

pγ
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0 0 0 0 pγ + (1− p) 0 0
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pγ pγ+(1−p)
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2

0 0 0 pγ + (1− p)



.

B.2 Residual Variance of Constructed Score

To test the heteroscedasticity of Γ̂− τ(X), we run a simulation study using the data

generating process outlined in Section 2. We use 4000 independently generated samples.

We construct the scores Γ̂ using the AIPW estimator Equation (6), where the nuisance

parameters are cross-fitted using regression forests (Breiman 2001).

After constructing the scores, the residuals Γ̂ − τ(X) are recorded. We repeat the

simulation for different values of p, the probability of being in the minority group. For each

value of p, 50 simulation runs are conducted, and the calculated variances are averaged

over all 50 simulations. The overall residual variance, the residual variance on the minority

github.com/Frankz24/CATE-Imbalanced-Covariate/


Linan (Frank) Zhao June 7, 2024 52

group, and the residual variance on the majority group for different values of p are shown

in Figure A1. As we can see, when the data set is imbalanced, the variance of Γ̂− τ(X)

is significantly larger on the minority group than on the majority group.

A1: The red line shows the residual variance of the constructed scores on the minority
group against different values of p. The blue line shows the residual variance on the
majority group, and the black line shows the overall residual variance.

Further, notice that the scale of the overall variance of Γ̂ − τ(X) is around 7. The

variance of (τ(X)−Xβpop
γ ), on the other hand, is strictly between 0 and 1. To see why,

note that Var(τ(X) − Xβpop
γ ) = Var(( 1−p

pγ+1−p
)X5) = ( 1−p

pγ+1−p
)2Var(X5) = ( 1−p

pγ+1−p
)2 for

the minority group, which is strictly below 1. Similarly, Var(τ(X)−Xβpop
γ ) = pγ

pγ+1−p
)2,

is also between 0 and 1. This illustrates that the component Γ̂− τ(X) is dominating in

the residuals ε in Equation (15).
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B.3 Calculation for VA,VB

To calculate VA,VB in the expected MSE, we first calculate the Huber-White variance

estimator in Equation (15). Given the variance-covariance matrix of the coefficients,

VA = Var(β0) + 2Cov(β0, β1) + Cov(β0, β2) + Cov(β0, β3) + Var(β1) + Cov(β1, β2)

+ Cov(β1, β2) +
1

2
Var(β2) +

1

4
Cov(β2, β3) +

1

2
Var(β3) + Var(β4) + Var(β5) + Var(β6),

VB = Var(β0) + Cov(β0, β2) + Cov(β0, β3) +
1

2
Var(β2) +

1

4
Cov(β2, β3) +

1

2
Var(β3)

+ Var(β4) + Var(β5) + Var(β6),

where β0 is constant term and β1 to β6 are coefficients of X1 to X6 respectively.

C Application to the JTPA Study

C.1 The “Age” Covariate

The “age” covariate in the JTPA data set is imbalanced, with the 25th percentile

being 21 years old, the median being 27 years old, and the 75th percentile being 35 years

old. Only 14.3% of the sample is at least 40 years old. The full histogram of the “age”

covariate is shown in Figure A2.

A2: This histogram shows the frequency of different age groups in the JTPA data set.
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C.2 Semi-Synthetic JTPA Data Set

Below, we compare the real JTPA data set and the generated semi-synthetic data

set. The generated data captures the complex dependencies among covariates and their

underlying distributions well. Again, we observe that the fake data consistently outputs

a higher outcome variable. However, since this effect is visible for both control and

treatment units, it would not affect CATE estimation too much.

A3: The top-left graph shows the correlation plot among covariates in both the real and
fake data sets. The bottom-left plot shows the scatter plot of selected covariates with
the outcome variable, where the fake data is overlaid on top of the real data. The plot
on the right shows the histogram of selected covariates. The red bars and points indicate
fake samples, whereas the blue bars and points indicate real samples.

D Additional Simulation Results

D.1 Signal to Noise Ratio

The following Figure A4 shows the performance of the weighted linear model using

the constructed AIPW scores when the signal-to-noise ratio varies in the data set. When

the SNR is large, fitting two models is, in fact, desirable. This is not surprising as the

CATE function is linear for the two groups separately. However, as the signal-to-noise

ratio decreases, the MSEs obtained from fitting two models become worse than fitting

one model. In fact, when SNR is 0.2, the single weighted linear regression can achieve

much lower MSE on the minority group while maintaining similar performance on the

majority group.
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A4: The three graphs show the performance on the majority and minority groups using
the weighted linear model with different minority weights under different SNRs. The red
dots plot the MSEs obtained from training two separate linear models on the two groups.

Figure A5 shows the performance of the causal forest with different minority weights

for 0.2 SNR and a smaller training set of size 1000. In this case, a single causal forest

with the appropriate minority weight can achieve much better results than fitting two

separate models. Still, one needs to be careful with the final chosen weight, as a large

weight can worsen both groups.

A5: Performance disparity against different minority weights γ using the causal forest
approach when the SNR is 0.2 and the training sample size is 1000. The red dot plots
the MSEs obtained from training two separate causal forests.

Figure A6 shows the generation quality of the WGAN being trained on low SNR (0.2)

input data. The distributions of the covariates and the generated outcome variables are

still well-learned. However, due to the noisy input, the generator hallucinates correlations

among input covariates that are absent in the data generation process. This can be

potentially harmful and may explain the observation that a smaller amount of synthetic

data should be added.
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A6: The WGAN generation quality when the signal-to-noise ratio is low (0.2). The
graph follows the same structure as Figure A3.

D.2 Extremely Imbalanced Covariates

Here, we present additional results on the weighted linear model when the first co-

variate is extremely imbalanced (p = 0.4). This is the case where only about 40 units

are present in the minority group. Contrary to the smooth trade-off curve in Figure 1,

Figure A7 demonstrates the potential insufficiency of the weighted linear model. When

small weights are put on the minority units, the model does provide slightly better MSEs

for the minority group. However, larger weights cause the performance on both groups

to deteriorate significantly. This behavior may also correlate with the fact that score

construction would be much harder on the small minority group.

A7: Result for weighted linear regression when the covariate is extremely imbalanced
(p = 0.01). The plots show the performance disparity between the two groups as the
weight on minority units varies.
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Combined with the results in Figure 15, reweighting methods tend to fail when the

amount of information for the minority group is substantially scarce.

Figure A8 shows the generation quality of the WGAN being trained on the extremely

imbalanced input data. Note that we oversampled the minority group before training the

generators. The results show that the generators can learn the underlying distribution

faithfully, even with highly limited data.

A8: The WGAN generation quality when the covariate is extremely imbalanced (p =
0.01). The graph follows the same structure as Figure A3.

D.3 Independent CATE on the Two Groups

There are no additional results for this section. As mentioned, the performance for

the weighted linear model closely resembles Figure 1. And since the CATE function is

still relatively simple, the WGAN generation quality is also decent, similar to Figure 4

and hence omitted.

D.4 Complex Nonlinear CATE Function

Figure A9 shows the performance of the weighted linear regression with AIPW scores

in the setting where the CATE is complicated and nonlinear. The MSEs produced with

linear regression are much larger than causal forest approaches (Figure 17). This demon-

strates the generality and power of non-parametric methods.
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A9: Result for weighted linear regression when the CATE function is nonlinear and
complicated. The plots show the performance disparity between the two groups as the
weight on minority units varies.
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